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In this paper, we propose a novel gender classification framework, which utilizes not only facial features,

but also external information, i.e. hair and clothing. Instead of using the whole face, we consider five facial

components: forehead, eyes, nose, mouth and chin. We also design feature extraction methods for hair and

clothing; these features have seldom been used in previous work because of their large variability. For each

type of feature, we train a single support vector machine classifier with probabilistic output. The outputs of

these classifiers are combined using various strategies, namely fuzzy integral, maximal, sum, voting, and

product rule. The major contributions of this paper are (1) investigating the gender discriminative ability of

clothing information; (2) using facial components instead of the whole face to obtain higher robustness for

occlusions and noise; (3) exploiting hair and clothing information to facilitate gender classification.

Experimental results show that our proposed framework improves classification accuracy, even when

images contain occlusions, noise, and illumination changes.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Gender classification using facial images is widely used in
applications like human–computer interface, demographics, and
customer-oriented advertising. The most common pipeline for
gender classification is feature extraction (including preprocessing)
followed by classifiers trained on the features. In recent years, based
on this pipeline, many approaches have been proposed [1–9], which
have achieved promising accuracy on various data sets.

However, practical applications of these approaches still suffer
from two unsolved problems. The first is the neutral face problem.
As the name suggests, neutral faces are those whose appearance
conveys less discriminative information. From the point of view of
pattern recognition, neutral faces are the points which always lie
on the boundary between male and female regions in the feature
space, no matter what kind of feature representation is adopted.
The other problem is the presence of face occlusions, e.g. masks
and sunglasses, and noise and illumination changes. In feature
space, they cause a big deviation from ‘‘contaminated’’ face space
to normal face space.

Humans do not classify gender based solely on facial informa-
tion; they also use other information such as hair, clothing, voice
e Computing and Machine

Engineering, Shanghai Jiao

0240, China.

u.cn (B.-L. Lu).

ll rights

l., Gender classification b

ucom.2014.01.028
and gait when encountering difficulties. The psychological experi-
ment in our previous work showed that hair provides discrimi-
native clues to human [10], especially when the face is neutral.
To prove the effectiveness of clothing, we conduct a similar
experiment: First, 548 upper body clothing images without faces
(half male and half female) as shown in Fig. 1 are collected. Then
three human subjects are asked to classify the gender of these
images. They get 96.3% classification accuracy on color images,
and 93.5% on gray images on average. From this experiment, we
conclude that clothing can serve as a useful clue for humans in
gender classification tasks.

To overcome the occlusion problem, a strategy is to extract local
features instead of global features. This strategy is the foundation of
the bag-of-words framework for object classification [11] to deal
with the large intra-class variations of objects. A drawback of using
local features is its ignorance of some global information, especially
spatial constraints. Therefore, determining the granularity of the
local features is a crucial issue: the scale of features cannot be on the
pixel level which bag-of-words methods use, nor can it be too large
since that would lose the robustness against variations. In [12],
psychological experiments showed that individual facial compo-
nents (brows, eyes, nose, mouth and chin), when seen in isolation,
carried much information about gender. Therefore facial component
level is a good choice.

Based on the discussion above, we propose a novel gender
classification system, which utilizes hair and clothing information
and extracts facial features from facial components instead of the
y combining clothing, hair and facial component classifiers,

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2011.01.028
mailto:bllu@sjtu.edu.cn
mailto:blu@cs.sjtu.edu.cn<!--AQ2-->
dx.doi.org/10.1016/j.neucom.2011.01.028
dx.doi.org/10.1016/j.neucom.2011.01.028


Fig. 1. Upper body clothing images without faces.
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Fig. 2. Flowchart of our gender classification framework.
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whole face. The flowchart of the framework is shown in Fig. 2. First,
in the feature extracting stage, the facial region is divided into five
facial components, namely forehead, eyes, nose, mouth, and chin.
The feature representations for hair and clothing are also designed.
Then in the classifier training stage, seven classifiers are trained
correspondingly. Here we use support vector machines (SVMs) with
probabilistic outputs [13]. Finally, five classifier combination strate-
gies (fuzzy integral [14], sum, maximal, voting and product rule) are
used to integrate the results of the seven classifiers into a single
composite score for gender prediction.

In our experiments, FERET [15], AR [16] and a data set
collected by us (denoted by BCMI1) are used. Three multi-feature
combination experiments are done: (a) combination of five facial
components (O); (b) combination of clothing, hair and the whole
face (C.H.F); and (c) combination of clothing, hair and five facial
components (C.H.O). Comparisons of the results show that the
facial components combination gives better accuracy than the
whole face that the clothing, hair and the whole face combination
performs better than any single feature, and that the clothing, hair
and five facial components combination achieves the best accu-
racy. Experiments also indicate that our proposed multi-feature
combination framework performs much better than Ueki’s
method [17], which is another work using clothing and hair
information to facilitate gender classification.

To demonstrate the robustness of our framework, we carry out
experiments on two kinds of test images. One, based on the BCMI
data set, has artificial occlusions and Gaussian white noise. The
other, based on the AR data set. has natural occlusions (glasses
and scarves) and illumination changes. One experiment is to
compare the gender classification accuracy of the facial compo-
nent classifiers combination with that of the whole face classifier.
The other is to compare the accuracy with clothing and hair
features to that without. These experiments show that our
framework is robust against occlusions and noise.

The remaining part of this paper is organized as follows.
In Section 2, we introduce related work on gender classification.
1 The database is named after the abbreviation of our research center.
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In Section 3, we introduce clothing, hair and facial component
representation methods. In Section 4, we describe pattern classi-
fiers and five classifier combination strategies. In Section 5, we
evaluate experimental results. Finally, we give our conclusions
and discuss future work.
2. Related work

Various gender classification methods are reported in the
literature. These methods can be divided to two main categories.

The first category is appearance-based approaches. Some early
work used single- or multiple-layer neural networks with image
pixels as input, e.g. [1,18–20,3]. Sun et al. [21] computed Principle
Component Analysis (PCA) features from faces while Jain and
Huang [22] used independent component analysis (ICA). Moghaddam
and Yang [4] demonstrated that SVM work much better in
gender classification than RBF networks and nearest neighbor. Lian
and Lu [5,23] used min-max modular SVM with image pixels as
input. They also experimented with Local Binary Pattern (LBP) as face
features. Xia et al. [8] adopted Local Gabor Binary Papping Pattern to
extract face feature. Saatci and Town [24] build the Active Appearance
Model (AAM) for faces and developed a cascaded structure of SVMs
for gender classification. Kim et al. [6] applied Gaussian process
method, as it could automatically determine the hyper-parameters.
Adaboost framework is also utilized in [25,26,7] and achieved
promising accuracy. Erno and Roope [9] have done a comprehensive
evaluation of state-of-the-art appearance-based approaches com-
bined with automatic real-time face detection and manual face
normalization.

The other category is based on geometrical features. Brunelli
and Poggio [2] extracted 16 geometric features from faces, such as
eyebrow thickness and pupil to eyebrow separation, as input to
the HyperBF network to learn the differences between the two
genders. Burton et al. [27] extracted point-to-point distances from
73 points on face images and used discriminant analysis as a
classifier.

Although having achieved good performances in gender clas-
sification on various data sets, the approaches mentioned above
y combining clothing, hair and facial component classifiers,
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only used facial region and discarded other information such as
clothing and hair because of their variability. To the best of our
knowledge, only a few works have discussed using multiple
sources of information in gender classification. Ueki et al. [17]
extracted clothing, hair and facial information using principal
component analysis (PCA), trained Gaussian mixture models
(GMM) for two clothing styles, and used a Bayesian approach to
combine these models for gender classification. However, GMM
models are susceptible to over-fitting. Our previous work
involved hair information in gender classification. Ji et al. [28]
constructed a geometric hair model (GHM) to extract hair
features and used local binary pattern (LBP) to extract facial
features, then a support vector machine to classify gender.
Classification accuracy was improved by combining hair and
facial information. In [10], a fragment-based hair representation
was used, and hair and facial information were combined by
fuzzy integral. It highly improved classification accuracy.
3. Feature extraction of clothing, hair, and facial components

3.1. Local binary pattern (LBP) descriptor

Local binary patterns were first used by Ahonen et al. [29] for face
recognition and by Lian and Lu [5] for gender classification. It is a very
simple but efficient algorithm for local texture information extraction
and it is also stable under illumination changes and rotation. We use
this method for clothing and facial feature extraction.

The original local binary pattern operator labels the pixels of
an image by thresholding the 3�3 or more neighborhood of each
pixel with the center value as illustrated in Fig. 3(a) and con-
sidering the result as a binary number:

Sðfp�fcÞ ¼
1, fp�fc Z0

0, fp�fc o0

(
ð1Þ

where fc is the value of the center and fpðp¼ 0;1, . . . ,7Þ is the value of
the neighborhood of fc. The LBP operator value at the center pixel is

LBPðfcÞ ¼
X7

p ¼ 0

Sðfp�fcÞ2
p: ð2Þ

A 3�3 neighborhood example is shown in Fig. 3(b). The final LBP
operator binary value is 11010011, which is 211 in decimal. In 3�3
neighborhood, LBP operator ranges from 0 to 255. Mapping the LBP
operator value in every pixel to a gray value, we get an LBP texture
image. The LBP texture images of Fig. 1 are shown in Fig. 3(c).

A uniform pattern which is an extension to the original LBP
operator is used in this paper. A local binary pattern operator is
called uniform if it contains at most two bitwise transitions from
5

4

6

Fig. 3. Local binary pattern and clothing texture images: (a) LBP circular, (b) a LBP o

in Fig. 1).

Please cite this article as: B. Li, et al., Gender classification b

Neurocomputing (2014), doi:10.1016/j.neucom.2014.01.028
0 to 1 or vice versa when the binary string is considered circular.
For example, 00000000 and 11000011 are uniform LBP codes, but
10101111 is not uniform. There are 58 labels for uniform patterns
and one label for any non-uniform pattern, so 59 labels for the
3�3 neighborhood are used overall. The image is divided into m

regions R0,R1, . . . ,Rm�1 and the spatially enhanced histogram is
defined as:

Hj,i ¼
X
x,y

Iffulðx,yÞ ¼ igIfðx,yÞARjg, i¼ 0;1, . . . ,n�1; j¼ 0;1, . . . ,m�1,

ð3Þ

where

IfAg ¼
1, if A is true

0, otherwise

(
ð4Þ

where n is the number of uniform patterns, n is 59 in a 3�3
neighborhood, and fulðx,yÞ is the uniform pattern value in position
(x,y). Combining these feature vector of sub-regions, the final
vector feature is obtained:

V ¼ fH0;0, . . . ,H0,n�1,H1;0, . . . ,H1,n�1, . . . ,Hm�1;0, . . . ,Hm�1,n�1g: ð5Þ

LBP features can be described on three levels: an LBP uniform
operator describes the pattern on the pixel level, the labels
summed over a sub-region give information on the regional level,
and the combination of sub-region histograms gives a description
on the global level. LBP features can efficiently represent image
texture information at all levels, so the technique is widely used
in many applications.

3.2. Clothing feature extraction

Extracting effective features from clothing regions is challen-
ging since faces have a relatively constant structure (e.g. almost
all non-occluded faces have brows, eyes, nose and mouth), while
clothing is much more complex and can have a large variety of
styles in texture, shapes, and colors. The same clothes may have
different visual effects when worn by different persons or even
the same person moving differently. Clothing information is
usually discarded in existing gender classification systems due
to its large variation. There is little research on extracting clothing
features. In spite of the differences in individual clothing, we
observe that clothing from the same gender does share some
common features. For instance, male clothing usually has a simple
style and color, with a shirt with a collar and fewer ornaments,
while females may have complex styles such as open collar, lots
of ornaments, and multiple colors. Taking the four clothing
images in Fig. 1 as an example, we can easily see that the former
two are male and the latter two are female. The two males are
9 1

4 7

2 3

1 1 0

1 1

1 0 0

perator, (c) clothing texture images after LBP operation (original images shown

y combining clothing, hair and facial component classifiers,
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wearing shirts with simple color and the two females are wearing
clothes with complex styles, open collar and multiple colors.

Motivated by the above observation, we use a color histogram
and the local binary pattern algorithm for clothing feature
extraction in this paper. Color histogram involves color informa-
tion of clothing and local binary pattern [30] involves texture
information. Both methods are invariant to rotation and illumina-
tion changes.

3.3. Hair feature extraction

Traditional face recognition and gender classification systems
usually discard hair information because of its large variation in
geometry, colors and texture. However, this information is highly
useful in gender classification because of the obvious difference in
hair length and style between male and female. Based on our
previous work [10], we adopt Lapedriza’s method [31] for hair
feature extraction. In this method, hair zones are selected to form
a building block set, which is used to represent the unseen image
as a set of puzzle pieces. Then the unseen image is reconstructed
with the most similar fragments in the building block set. The
hair feature is encoded by a weight vector which represents the
importance of every fragment.

3.4. Facial component feature extraction

Facial information is important in representing human indivi-
duality and gender. In the literature, feature extraction is usually
applied on the whole face, and the results are called global
features. However, the quality of global features greatly depends
on face alignment and occlusions, while local features are
believed robust to the variation of facial expression, illumination,
and occlusions [32]. Furthermore, psychological experiments
show that sub-face individual features (brows, eyes, nose, mouth,
and chin), when seen in isolation, carry much gender information
[12]. In this paper, we consider using the features of forehead,
eyes, nose, mouth, and chin components, separately. Since the
local binary pattern technique has been successfully applied to
face feature extraction for face recognition [29] and gender
classification [5], here we use a local binary pattern algorithm
for extracting the whole face and facial component features.
We detect facial regions using the Adaboost face detection
algorithm [33] and locate facial components using an active
shape model (ASM) [34] automatically, then the five facial
components (forehead, eyes, nose, mouth and chin) are cropped
to fixed window sizes. The details of image preprocessing and
cropping will be described in Section 5.
4. Pattern classifier and classifier combination strategies

Support vector machines (SVMs) are the most commonly used
pattern classifier in gender classification [4]. We use SVMs with
probabilistic output [13]. Suppose we have training data
Dt ¼ fðxt

i ,d
t
i Þg

N
i ¼ 1 for a component, where tA {clothing, hair, fore-

head, eyes, nose, mouth, and chin}, xt
i is the component feature

extracted from the i-th image, and dt
i Af�1;1g are gender labels

(1 for male and �1 for female). We train a component classifier gt

using Dt . The output of gt is in the range [�1,1] with the sign
indicating gender and absolute value indicating the confidence.

Then a classifier integration mechanism combines the results
of these classifiers. In the following, we first introduce four simple
but widely used integration methods—maximal, sum, voting, and
product rule, then we introduce fuzzy integral, which has larger
expressive ability and in special cases is equivalent to those four
methods.
Please cite this article as: B. Li, et al., Gender classification b
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4.1. Simple combination strategies

The advantage of maximal, sum, voting and product rules is
their simplicity: they require no training. Given the outputs of all
the classifiers, the maximal (sum, product rule) method is to
compare the maximum (sum, product) of all the probability
confidences that a sample belongs to male and female in all the
classifiers; and the voting method obtains the prediction result by
voting from all the classifiers.

4.2. Fuzzy-integration-based classifier combination

The defect of these simple strategies is that they rely on the
unreasonable assumption that all the component classifiers are
mutually independent. This assumption is usually inconsistent
with the real situation.

To eliminate such assumptions, Sugeno [14] introduced the
concept of the fuzzy integral, which has become increasingly
popular for multi-attribute classification. A fuzzy integral actually
is the integration of real functions with fuzzy measures. Fuzzy
measures are an extension of classical measures. A general fuzzy
measure is defined as follows:

Definition 1. A fuzzy measure m defined on X ¼ fx1,x2, . . . ,xng is a
set function m: PðXÞ-½0;1� (P(X) indicates the power set of X)
satisfying:
(1)
y co
mð|Þ ¼ 0,mðXÞ ¼ 1,

(2)
 ADB) mðAÞrmðBÞ.
The fuzzy measure we adopt in this paper is the Choquet
integral [35].

Definition 2. Let m be a fuzzy measure on X. The discrete Choquet
integral of a function f : X-Rþ with respect to m is defined by

Cmðf ðx1Þ, . . . ,f ðxnÞÞ9
Xn

i ¼ 1

ðf ðxiÞ�f ðxi�1ÞÞmðSiÞ, ð6Þ

where i indicates that the indices have been permuted so that
0¼ f ðx0Þr f ðx1Þr � � �r f ðxnÞr1 and SðiÞ9fxi, . . . ,xng.

Fuzzy integrals have two advantages. First, with a properly
designed fuzzy measure, a fuzzy integral can simulate any one of
the four methods described in Section 4.1. For example, with an
evenly distributed measure on all subsets, the fuzzy integral is
actually the ‘‘maximal’’ operator. Second, we can represent the
importance of individual classifiers and interactions (redundancy
and synergy) among any subset of the classifiers using an
appropriate fuzzy measure.

The expressive ability lies in the fact that fuzzy measures can
be set freely, as long as they do not violate the two constraints in
Definition 2. We can compute the fuzzy measure m from training
data, by minimizing error J:

J¼
Xm
i ¼ 1

ðC1
mðxiÞ�C�1

m ðxiÞ�1Þ2þ
Xn

j ¼ 1

ðC�1
m ðyjÞ�C1

mðyjÞ�1Þ2, ð7Þ

where fx0,x1, . . . ,xmg are m samples that belong to class 1,
fy0,y1, . . . ,yng are n samples that belong to class �1, and
Ck
mðzÞðk¼�1;1Þ is the global confidence that z belongs to class k

by classifier combination, which is given by

Ck
mðzÞ ¼ Cmðhkðg1Þ, . . . ,hkðgcÞÞ, ð8Þ

where Cm is defined as Definition 2, m is the fuzzy measure, hkðgtÞ

is the confidence of sample z belonging to class k in classifier gt ,
tAf1;2, � � � ,cg, and c is the number of classifiers to be combined.
This is actually a quadratic optimization problem.
mbining clothing, hair and facial component classifiers,
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Table 1
Description of training and test data sets from FERET and BCMI data set.

Database No. male/no. female Total No. training No. test

FERET 341/341 682 227�2 114�2

BCMI 1095/1095 2190 821�2 274�2
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5. Experiments

Two data sets are used in our experiment. One is FERET [15]
and the other is BCMI collected by us. The images in the BCMI
data set contain clear human frontal upper clothing, facial and
hair regions. Some examples are shown in Fig. 4. All of the images
are of eastern Asians, of different ages and occupations. In the
FERET data set, 782 images with clear clothing regions are chosen.
Four hundred and fifty four of them are chosen randomly as
training data, and the rest as test data. The BCMI data set contains
2190 images in total. One thousand six hundred and forty two
images are chosen randomly as training data, and the rest as test
data. In both data sets, the ratio of training to test data is about
3:1, and both the training and test data have equal numbers in the
two genders, as shown in Table 1. In the training stage, four fifths
of the training data are picked randomly for training SVM models
and the remaining fifth is used for computing the fuzzy measure
by minimizing Eq. (7) on it.

All of these experiments are repeated ten times with different
random partitions of the data. The final results are reported as
the mean and standard deviation of the results from individual
runs. The parameters of SVMs are determined by five-fold cross
validation, and three kernels, namely linear, polynomial, and RBF,
are used in our experiments. The code for SVMs is from LibSVM
[36]. The experiments are performed on a computer with 8G RAM
and a 2.83 GHz CPU.

5.1. Image preprocessing

The flowchart of preprocessing is shown in Fig. 5(a). First, the
background is removed and some important points on brows,
eyes, nose, and mouth are located. In the first step, we apply the
Sobel edge detection algorithm to the input image to obtain the
edge contour. According to the edge contour the background
is removed. To locate important points, the facial region is
first detected by the Adaboost face detector [33], and then the
locations of brows, eyes, nose, mouth, and chin are obtained from
the Active Shape Model (ASM) [34] previously trained. After that,
we rotate the image so that eyes are on the same horizontal line,
and resize it to make the size of the facial region 150�130 pixels.
Fig. 4. Sample example

Please cite this article as: B. Li, et al., Gender classification b
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Finally facial components and clothing regions are cropped
according to the fixed window sizes shown in Fig. 5(b).

5.2. Clothing information

We extract clothing information using the LBP algorithm. The
image is divided into 7�7 sub-regions with 3�3 neighborhood,
yielding a feature vector with dimension of 7�7�59¼2891. The
average extraction time for an image is about 75 ms, as shown in
Table 3. Results of gender classification on clothing features
extracted by gray, color histogram, and LBP algorithm are shown
in Table 2. The average accuracies of LBP feature are 72.3% and
79.5% on the two data sets.

5.3. Hair and facial information

To extract hair information, 600 hair fragments with size of
10�10 pixels extracted from images in training data are selected
as the Building Blocks set, and then hair features are calculated
using this set. LBP is applied to extract both global and local face
features. The number of LBP bins, feature vector dimensions and
feature extraction time for hair, clothing, face and facial compo-
nents are shown in Table 3. We can see that hair feature
extraction takes the longest time due to the high computation
complexity of matrix factorization.

5.4. Single classifier

For each component, an SVM classifier with linear, polynomial,
and RBF kernels is trained. The total training time for each SVM
and average test time of a sample are shown in Table 4. Each SVM
gender model needs only be trained offline once, then the gender
s of BCMI data set.

y combining clothing, hair and facial component classifiers,
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Fig. 5. Image preprocessing: (a) the flowchart of image preprocessing and (b) window sizes for cropping.

Table 2
Accuracy (%) of gender classification based on clothing features.

Kernel FERET BCMI

Gray-His Color-His LBP Gray-His Color-His LBP

Linear 61.671.6 64.371.3 73.070.8 66.072.0 70.271.2 76.371.4
Poly 63.772.3 65.871.1 71.872.6 67.771.0 72.570.8 80.371.2
RBF 63.672.1 66.271.1 72.272.8 68.371.4 72.270.8 81.871.3

Average 63.072.0 65.471.2 72.372.1 67.371.5 71.770.9 79.571.3

Table 3
LBP bins, feature vector dimensions (Dim) and extraction time (ms) of hair,

clothing, face and facial components.

Parameter Clothing Hair Face Forehead Eyes Nose Mouth Chin

Bins 7�7 – 7�7 3�7 2�7 3�2 3�5 2�5

Dim 2891 600 2891 885 590 352 1180 885

Time 74.4 1540 25.0 7.8 4.7 1.6 9.4 6.3
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of a test sample can be predicted in a few milliseconds. This
means that our framework can be applied to a real-time gender
classification system. Because these SVM models are independent
of each other, the framework could be easily implemented in
parallel, which would further reduce the computation time.

The performance of each classifier is shown in Table 5. We can
see that the classifier of the whole face feature gets the highest
accuracy, which is 88.5% and 91.9% on average on the two data
sets. In both data sets, among facial components classifiers,
forehead and chin perform best, while nose does worst. This
indicates that forehead and chin regions provide the most
discriminative information for gender, while nose is compara-
tively less useful. In addition, the gender classifier using hair gets
accuracy of 79.7% and 77.7%, which indicates our hair feature
representation is effective.

5.5. Classifier combination

We consider three classifier combinations: (1) combination of
clothing (C), hair (H), and the whole face (F); (2) combination of
Please cite this article as: B. Li, et al., Gender classification b
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five facial components (O); and (3) combination of clothing (C),
hair (H), and five facial components (O). They are denoted by
(C.H.F), (O), and (C.H.O) respectively. We adopted five different
combination mechanisms: sum, maximal, voting, product rule
and fuzzy integral. The results are shown in Table 6. On FERET
data set, fuzzy integral performs best in all cases. On BCMI data
set, product rule performs better than fuzzy integral in combina-
tions (C.H.F) and (O), while fuzzy integral outperforms other
cases. By comparing results in Tables 5 and 6, we can see that
combining classifiers improves the performance. An interesting
result is that the accuracies obtained by combination of facial
components, are higher than those obtained by the face classifier
which uses global features extracted on the whole face. In Section
5.6, we will demonstrate that with occlusions and noise, the
superiority of (O) to the whole face classifier is more significant.

Finally, we compare our method with Ueki’s [17]. The classifier
combination method we use here is fuzzy integral. The results are
shown in Table 7. In Ueki’s work, PCA is used to extract features
and the classifier is GMM. From this table, we can see that for hair
and face classifiers, our method performs better (clothing result
for Ueki’s is not shown since in their work the corresponding
classifier is not trained for classifying gender). When combining
individual classifiers, our method performs much better.
5.6. Robustness of multi-feature combination

We first evaluate the robustness against occlusions and noise
gained by using facial components instead of the whole face. We
carry out two experiments on artificial and natural low quality
images.
y combining clothing, hair and facial component classifiers,
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Table 4
Training time (h) of SVM classifiers and average testing time (ms) of a sample image.

Type Kernel Clothing Hair Forehead Eyes Nose Mouth Chin Face

Training (h) Linear 2.02 1.97 0.30 0.32 0.28 0.62 0.77 2.38

Poly 2.72 1.98 0.48 0.33 0.25 0.68 0.77 3.08

RBF 5.20 2.53 0.73 0.58 0.32 1.17 1.33 5.87

Average 3.31 2.16 0.50 0.41 0.28 0.82 0.96 3.78

Test (ms) Linear 13.02 2.82 3.55 2.87 2.31 5.49 4.92 11.49

Poly 15.01 3.34 3.60 2.81 2.52 6.34 5.42 13.37

RBF 22.52 3.26 4.67 3.29 2.60 8.76 6.45 24.62

Average 16.85 3.14 3.94 2.99 2.48 6.86 5.60 16.49

Table 5
Gender classification accuracy (%) of SVM classifiers on single feature.

Database Kernel Hair Forehead Eyes Nose Mouth Chin Face

FERET Linear 78.571.1 82.971.4 73.870.7 65.572.0 82.870.8 82.671.1 88.671.1
Poly 80.171.3 83.371.0 75.170.6 63.272.7 83.570.6 83.570.8 88.370.7
RBF 80.671.5 82.971.0 76.272.0 64.971.4 82.671.7 84.771.6 88.671.1
Average 79.771.3 82.671.1 75.171.1 64.572.0 82.971.1 83.671.2 88.571.0

BCMI Linear 76.871.4 86.171.5 81.372.2 66.471.8 82.271.0 84.371.1 91.670.8
Poly 77.871.1 86.971.0 82.672.0 68.771.6 83.671.1 85.771.1 91.970.9
RBF 78.470.8 87.570.9 82.972.6 68.371.5 83.571.2 85.971.4 92.271.1
Average 77.771.1 86.871.1 82.372.3 67.871.6 83.171.1 85.371.2 91.970.9

Table 6
Gender classification accuracy (%) of classifiers combinations: (C.H.F), (O) and (C.H.O) using sum, maximal, voting, product rule and fuzzy integral on FERET and BCMI.

Method Database Kernel Sum Maximal Voting Product Fuzzy

(C.H.F) FERET Linear 90.271.5 89.972.3 89.670.2 90.871.8 92.970.2
Poly 91.471.3 90.871.2 89.970.4 90.971.3 92.770.3
RBF 90.872.3 90.272.0 90.172.1 91.272.0 93.470.9
Average 90.871.7 90.371.8 89.970.9 91.071.7 92.770.5

BCMI Linear 92.970.7 93.370.8 91.671.2 93.670.8 93.270.5

Poly 93.970.8 93.970.9 93.471.2 94.570.7 93.470.6

RBF 93.671.0 94.371.1 93.671.2 94.471.0 93.671.0

Average 93.470.8 93.870.9 92.971.2 94.270.8 93.470.6

(O) FERET Linear 89.571.2 90.872.1 87.371.6 91.272.0 91.770.9
Poly 89.571.8 89.972.3 86.871.9 90.472.0 93.070.4
RBF 90.872.8 91.272.9 89.072.9 91.272.7 93.470.9
Average 89.971.9 91.272.4 87.772.1 90.972.2 92.770.7

BCMI Linear 92.371.5 91.371.6 91.271.7 92.771.5 92.971.2
Poly 93.271.2 92.871.4 91.971.4 93.871.1 93.471.0

RBF 93.471.1 93.271.4 92.571.6 94.071.1 93.771.0

Average 93.071.3 92.571.5 91.971.6 93.571.2 93.371.1

(C.H.O) FERET Linear 91.772.1 90.872.0 91.272.3 91.271.8 94.970.6
Poly 90.871.5 90.471.8 90.872.9 91.271.6 95.870.4
RBF 91.772.7 93.473.3 91.774.0 93.473.6 94.770.5
Average 91.472.1 91.572.4 91.273.1 92.072.3 95.170.5

BCMI Linear 93.770.9 91.871.3 91.071.4 93.571.0 94.570.9
Poly 94.371.0 93.171.4 92.770.9 94.671.0 95.370.6
RBF 94.671.0 94.271.2 93.171.0 94.970.9 95.370.8
Average 94.271.0 93.071.3 92.371.1 94.370.9 95.070.8

Table 7
Gender classification accuracy (%) comparison with Ueki’s method.

Database Method Clothing Hair Face (C.H.F) (O) (C.H.O)

FERET Ours 72.372.1 79.771.3 88.571.0 92.770.5 92.770.7 95.170.5
Ueki’s – 58.573.9 78.571.8 82.070.5 – –

BCMI Ours 79.571.3 77.770.8 91.971.1 94.271.0 93.571.1 95.070.8
Ueki’s – 73.371.7 79.275.6 87.672.0 – –
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Facial Region OccludedOriginal Image Facial Components Occluded Gaussian Noise Added

Wearing GlassesOriginal Image Wearing Scarf Illumination Changes

Fig. 6. Examples of experiment data: (a) images with artificial occlusions and Gaussian white noise in BCMI and (b) images with natural occlusions and illumination

changes in AR.
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Fig. 7. Comparison of (O) with face feature classifier on original and three kinds of contaminated images: (a) experiments on images with artificial occlusions and Gaussian

white noise and (b) experiments on images with natural occlusions and illumination changes.
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Fig. 8. Comparison of gender classification accuracy (%) of (C.H.O) with that of (O) on images with random occlusions and Gaussian noise on clothing, hair and facial

regions: (a) random occlusions and (b) Gaussian noise.
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The first experiment is on the BCMI data set. We keep the
original training images, but artificially process each test image in
one of the following three ways (as shown in Fig. 6(a)):
(a)
Pl

Ne
Occlude facial regions randomly: four sub-regions of face are
randomly selected to be occluded with black rectangles with
random sizes (ranging from 5 �5 pixels to 20 �20 pixels).
(b)
 Occlude facial components randomly: one of the following:
left eye, right eye, nose, and mouth component regions is
randomly selected to be occluded with a rectangle generated
in the same way as (a).
(c)
 Gaussian noise: add Gaussian white noise (with zero mean
and 0.01 variance) to sample images.
The second experiment is on the AR face data set [16].
We keep the original training images from the FERET data set,
and use four kinds of test images from the AR data set: original
images, images wearing glasses, wearing a scarf and illumination
changes, as the examples shown in Fig. 6(b). In this test set, there
are 76 male and 59 female samples.

Fig. 7 compares the performance of the face classifier with those of
facial component classifiers combination (O) strategies: fuzzy inte-
gral, maximal, sum, voting and product rule, on artificial (Fig. 7(a))
and natural (Fig. 7(b)) test data. Here we report accuracies averaged
over three SVM kernels (linear, polynomial and RBF). All classifiers
suffer from occlusions, noise and illumination changes. However, all
the facial component classifiers’ combinations outperform the whole
face classifier, which proves that using facial components strengthens
robustness against occlusions, noise and illumination changes. More-
over we can see that fuzzy integral is the most stable combination
strategy among the five combination methods.

To evaluate the robustness gained by combining hair, clothing,
and face, we conduct a similar experiment. Besides facial regions,
we also add random occlusions and noise on clothing and hair
regions. We compare the gender classification accuracy of the
clothing, hair and facial components combination (C.H.O) with
that of the facial components combination (O). The experimental
results (shown in Fig. 8) demonstrate that (C.H.O) performs better
than (O) when test images are contaminated. Therefore, we
can conclude that our proposed gender classification framework
improves gender classification accuracy by involving clothing and
hair information and it is also robust to occlusions and noise.

6. Conclusions and future work

In this paper, we have proposed a gender classification frame-
work which utilizes not only facial information, but also hair and
ease cite this article as: B. Li, et al., Gender classification b

urocomputing (2014), doi:10.1016/j.neucom.2014.01.028
clothing. We extract features on facial components instead of on
the whole face, which gives robustness against occlusions, illu-
mination changes and noise. We prove that clothing information
has discriminative ability, and design feature representations for
hair and clothing information that is discarded in most existing
work due to high variability. Moreover, classifier combination
mechanisms are used to integrate various features to successfully
boost the gender classification performance. Various experiments
on FERET, BCMI and AR data sets are conducted to evaluate the
performance of our framework. The experimental results show
that our proposed framework improves classification accuracy,
even in presence of occlusions and noise.

Our framework has two problems. First, hair feature extraction
will be affected by a complex background. This can be solved by
applying state-of-the-art segmentation algorithms. Second, com-
putation time for hair feature extraction is a big bottleneck which
impedes real-time application of our system. The future work is to
accelerate this process.
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