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a b s t r a c t

In this paper, an Incremental Neural Network for Classification and Clustering (INNCC) is proposed. The
main advantages of this neural network are the linkage between data topology preservation and classes
representation by using the cluster posterior probabilities of classes. It is a constructive model without
prior conditions such as a suitable number of nodes. A new neuron is inserted when new data are not
represented by existing neurons. In training step, both supervised and unsupervised learning are used.
The training dataset contains few samples with class labels and several unlabeled ones. The Support
Vector Machines (SVM) operates in the training step to assess the INNCC classification result. The
proposed approach has been tested on synthetic and real datasets. Obtained results are very promising.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Traditionally, there have been two fundamentally different
types of tasks in machine learning. The first one is unsupervised
learning [1]. The samples without class labels are grouped into
meaningful clusters. These clusters can be utilized to describe the
underlying structure in data space, which is helpful for better
understanding of data. The second task is supervised learning [2]
(classification). The samples with class labels are used to build the
classification mechanism, through which class labels can be
provided for new samples. However, labeled data are usually
insufficient and hard to obtain since data labeling requires
extensive expert effort and is often time-consuming. Meanwhile,
unlabeled data are often abundant in real world. Consequently,
Semi-Supervised Learning (SSL) is halfway between supervised
and unsupervised learning. In addition to unlabeled data, the
algorithm is provided with some supervision information but not
necessarily for all samples [3]. The key idea of Semi-Supervised
Clustering [3–5] is to take advantage of different kinds of prior
information to improve the performance of clustering. Another
neighbor concept in semi-supervised learning is Semi-Supervised

Classification methodology [6], as the name implies, a classifier is
first trained by labeled data and used to classify unlabeled data.
Consequently, unlabeled data that are classified with the highest
confidence (probability of belonging to a certain class) are added
incrementally to the labeled dataset with their predicted labels.
The procedure is repeated until convergence. These methods will
fail to approach the real data space if the labeled data cannot
represent the underlying structure of the particular space. Because
the initial trained classifier will give bad results on the unlabeled
data. Recently, many researchers have given attention to not only
use labeled and unlabeled data in the data set training, but use
semi-supervised clustering approach in classifier training [7,8].
Generally, such extra information can be given in many forms.
Three most common types are labeled data [5,7,8], relative
associations [9] and constrained relations [10–12].

Recently, another concept in machine learning have attracted
more attention. It is the incremental learning. It is the ability of
learning new information without relearning and deleting the
old data, so it raises the so-called stability/plasticity dilemma
[13]. Its main advantage is the system ability to make decisions
on-line.

Artificial Neural Network (ANNs) are used frequently in
machine learning in different areas. Their simple implementation
and the existence of mostly local dependencies exhibited in the
structure allow fast, and parallel hardware implementations. In
supervised learning, a Multi-Layer Perception (MLP) [14] and a
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Probabilistic Neural Network (PNN) [15] successfully use the class
information of samples to achieve high classification accuracies. In
suite of, they emphasize more the classification of the data than
the revelation of the data distribution, they fail to interpret the
obtained classification results well. The main limitation of the
original PNN architecture proposed by Specht [15] is that it
requires a separate neuron for each training pattern, which makes
the computation very slow for large databases requiring a large
amount of space in memory. The most popular unsupervised
network is Self-Organizing Map (SOM) models [16]. A combination
of Competitive Hebbian Learning (CHL) [17] and Neural Gas (NG)
[18] is effective in constructing topological structure: Growing
Neural Gas (GNG) [19] and Dynamic Cell Structures [20]. However
these models suffer from two main problems; the limitation of the
number of nodes to avoid exceeding the number of nodes and the
inability of the GNG to eliminate noise. Adaptive Resonance
Theory (ART) networks have been proposed as a solution to the
stability/plasticity dilemma [13]. These networks learn top down
expectations which are matched with bottom up input. The
expectations which are called categories summarize sets of the
input data into clusters. Several neurons networks based on the
GNG [19] are proposed for the incremental learning, they use the
similarity threshold criterion of insertion of new node: Prudent
and Abdel Ennaji in [21] proposed an Incremental Growing Neural
Gas (IGNG). But the similarity threshold should be a priori
determined and it is sensitive of noise. The Self-Organizing
Incremental Neural Network (SOINN) was introduced by Furao
and Hasegawa [22]. SOINN has a two-layered structure represent-
ing the input distribution at different levels of detail; this structure
reduces the sensitivity to noise. It uses an adaptive threshold. But
the weights of the neurons do not stabilize completely in the
incremental learning. The Enhanced Self-Organizing Incremental
Neural Network (ESOINN) [23] and Incremental Growing with
Neural Gas Utility parameter (IGNGU) [24] based on SOINN have
been proposed to solve the above-mentioned problem: in ESOINN
remove the second layer and one condition for the insertion of
new neurons. Furthermore, the whole network can be trained on-
line. But similar to SOINN, the weights do not stabilize completely.
In IGNGU, Neurons type and age are added so that the networks
become more stable in the incremental training. To deactivate
neurons representing the old data, the neurons age is used to not
remove the young neurons. M. Tscherepanow et al. proposed in
[25] a novel unsupervised neural network combining elements
from Adaptive Resonance Theory and topology-learning neural
networks (TopoART). It enables a stable on-line clustering of
stationary and non-stationary input data by learning their inher-
ent topology. Here, two network components representing two
different levels of detail are simultaneously trained.

In this paper, the focus is on the combination between the
clustering and the classification learning in Incremental Semi-
Supervised Neural Network for the following reasons: (1) In reality
unlabeled data are more avoidable and low cost than labeled data.
(2) The possibility of updating the system with new data without
re-learning the old ones, thus reducing the computation time and
the memory space for the old data. (3) ANNs can be naturally used
in on-line learning and for large data set applications. Their simple
implementation and the existence of mostly local dependencies
exhibited in the structure allows for fast, parallel implementations
in hardware. IGNG [21] realizes semi-supervised clustering, alter-
nating between clustering part of huge datasets and having users
to correct the network. Thus human operation remains complex,
including finding clustering mistakes, correcting the network by
edge insertion and deletion and assigning labels to disjoint sub-
graphs. Furao Shen et al. in [26] enhanced the SOINN to the semi-
supervised learning. The new neural network has three layers:
input, competitive and output. In the input layer, labeled and

unlabeled data are mixed to form training data input to the
competitive layer, such nodes and their connection represent the
topology structure for inputting training data. Labeled data is used
to label competitive layer nodes. A node labeled directly with an
input vector label is called a ”teacher node”. And it displays results
in the output layer, which has the same structured as the
competitive layer but it has labeled nodes. The weight vectors of
labeled nodes are used as prototypes to build classifiers. But, this
model remains not stable in the incremental learning case.

In this work, we develop a new Incremental Neural Network for
simultaneous Clustering and Classification (INNCC) improved by
Support Vector Machines (SVM) [27] able to partition and classify
the input data. This approach uses the unlabeled and labeled
samples to extract the data topology and the labeled ones to create
a classifier. We use the Bayesian theory and the cluster posterior
probabilities of classes to join between the clustering and classi-
fication learning. In the semi-supervised learning, unlabeled data
classified with the highest confidence (probability of belonging to
a certain class) are incrementally added to the labeled dataset with
their predicted labels. In our method before this data and their
predicated labels are added in the labeled dataset; the Support
Vector Machines (SVM) is used to assess their labels and only the
data with proved labels are added into the labeled dataset. To
make the approach more appropriate for the non-spherical dis-
tribution, a kernel-based metric is adopted. The goal is to develop
a network that is able to (1) automatically learn the number of
prototypes needed to represent every class. (2) Learn and classify
new information without destroying old learned ones, i.e., realize
incremental learning. (3) It is not affected by noise. Section 2
describes the proposed method. Experimental results on synthetic
and real datasets are given in Section 3. Finally, conclusion and
perspectives are given in Section 4.

2. Proposed approach

In this section, we will give a framework for the proposed
incremental semi-supervised neural network for clustering and
classification. First, an incremental semi-supervised neural net-
work using both labeled and unlabeled data is employed to learn
the underlying data space structure and a classifier is trained using
labeled data. The incremental semi-supervised neural network
produces the posterior probabilities of each unlabeled sample to
different classes. The unlabeled sample that has higher certainty of
belonging to one class (i.e., has one high value of posterior
probabilities of classes) is then classified by the classifier. The
most confidently classified unlabeled data with their predicted
labels are added to the labeled set. The incremental semi-
supervised neural network algorithm and the classifier are re-
trained. This procedure is repeated until all unlabeled data are
labeled. In this way our framework combines clustering and
classification in unison. The classifier is used to evaluate the
computed labels of data by the network during the training to
minimize the errors and to increase the performances of classifi-
cation. We choose the SVM as classifier because the SVMs [27] are
a powerful machine learning technique based on the principle of
structural risk minimization. They can solve linearly non-separable
problems using kernel tricks and have shown an excellent
generalization performance. Detailed surveys of SVM can be found
in [28].

Before presenting the INNCC training in details, we give some
notations: the training data set BA is

BA¼ fðxi; yi; PXiÞ=yiAf0;1;…;Kg⋀xiARd; i¼ 1;…;Ng

BA¼ BAþ [ BA�
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where xi is the feature vector of sample i and yi is its label.
PXi ¼ pðkjxiÞ is the posterior probabilities of the kth class and the
sample xi. PX is the posterior probabilities matrix. K is the number
of class, d is the input space dimension and N is the number of
samples. BAþ is the set of labeled samples (i.e yia0), and BA- is
the set of unlabeled ones (i.e yi¼0).

PX ¼
pð1j1Þ ⋯ pðkj1Þ pðK j1Þ

⋮ ⋮ pðkj iÞ ⋮
pð1jNÞ ⋯ ⋯ pðK jNÞ

2
64

3
75

The incremental neural network is represented by
INNCC ¼ ðW ;D;AG;NA; T ; S;U;mÞ where,

� m is the number of the neurons.
� W ¼ ½w1; ::;wm��T is the reference vector matrix, where

wj ¼ ½wj1; ::;wjd�T , j¼ 1;…;m.
� D¼ ½D1; ::;Dm�T is the vector of the neurons density, where

DjAR, j¼ 1::m.
� AG¼ ½AG1; ::;AGm�T is the vector of the neurons age, where

AGjAR, j¼ 1::m.
� NA¼ ½NA1; ::;NAm�T is the vector of the activation number of

neurons, where NAjAR, j¼ 1::m.
� T ¼ ½T1; ::; Tm�T is the vector of the neurons similarity threshold,

where TjAR, j¼ 1::m.
� S¼ ½S1; ::; Sm�T is the vector of the neurons state, where

SjAf0;1g j¼ 1::m, a activated neuron has Sj¼1.
� U ¼ ½U1; ::;Um�T is the matrix of the posterior probabilities,

where Uj ¼ ½uj1; ::;ujK �T , j¼ 1::m and ujk ¼ pðkj jÞ, pðkj jÞ is the
posterior probabilities of the kth class and the neuron j.

And 4 is the logical and, 3 is the logical or j :j is the cardinal
of set.

INNCC is an incremental self-organizing maps model. It does
not impose any constraint on the structure of the neural network.
It is updated in a continuous manner through a competitive
learning. It yields the topological structure of the data with typical
clusters by eliminating the remaining noise without any a priori
information. The built rules of the neural network are: (1) A new
neuron is inserted if it is necessary and (2) neurons in the low-
density regions are deleted. (3) To ensure the INNCC stability in
the incremental training; to learn the new data without forgetting
the already learned data, it is necessary to control the elimination
of the neurons i.e. to avoid deleting the neurons representing the
old data. For these reasons, we associate to each neuron a state
which can be activated or inactivated. After the INNCC training, all
neurons will be inactivated. In the next new data training, the
neurons are activated by these ones. In the useless neurons
elimination only the activated neurons intervene.

Each neuron has a reference vector wn, an age agen, a state Sn, a
similarity threshold Tn, an accumulator of density Dn, an accumu-
lator of activations NAn and a vector of posterior probability of
class Un. When an input sample ðxi; yi; PXiÞ is presented to INNCC, it

finds the nearest neuron (winner) of the sample. Subsequently it
judges if the input sample belongs to the same cluster of the
winner using the similarity threshold criterion. The INNCC updates
adaptively the similarity threshold of every neuron because the
input data distribution is unknown. The similarity threshold Tn is
calculated using the minimum distance between neuron n and the
other neurons in the network.

Tnew
n ¼minj ¼ 1::m4 jandistðwj;wnÞ ð1Þ

If the distance between the input sample and the winner neuron is
higher than its similarity threshold, the sample is inserted as a
new activated neuron with wnew ¼ xi, NAnew ¼ 1, Dnew ¼ 0 and
AGnew ¼ 0 (see Fig. 1).

Tnew ¼minj ¼ 1::mdistðwj; xiÞ ð2Þ
If the distance is lower than the similarity threshold, The winner
neuron is updated (the input sample activates the winner neuron)
(see Fig. 2) with

wnew
n ¼wold

n þηnðxi�wold
n Þ ð3Þ

NAnew
n ¼NAold

n þ1 ð4Þ
In order to not reside the neurons in the regions containing a large
number of unlabeled data, we adapt the value of η as

η¼ 0:02 if yia0
0:01 else

�

Dnew
n ¼Dold

n þð1þdistðwn; xiÞÞ�1 ð5Þ
Our method is based on an incremental training. Therefore we
suggest to compute the cluster posterior probabilities in a con-
tinuous manner. Formula (6) is used if the winner neuron is
updated. Formula (7) is used in the insertion of a new neuron
ðujk ¼ pðkj jÞÞ.

Unew
j ¼ Uold

j þðPXi�UjÞnaj; ð6Þ

Uj ¼ PXi ð7Þ
where aj is an adaptation variable. Its value is computed as

aj ¼ ð1þdistðxi; jÞÞ�1 ð8Þ
After training of τ samples, to control neurons number and noise
effect, the neurons having a high age and a low density are
removed: if many input samples are near the neuron, the neuron
density is high; if few input samples are near the neuron, the
density of this neuron is low. The mean density of activated
neurons is computed by formula (9) and the activated neurons
satisfying condition (10) are removed.

mdj ¼
Dj

NAj
ð9Þ

Fig. 1. New neuron insertion: if the distance between the input data x and the
winner is larger than the similarity threshold.

Fig. 2. Winner neuron is updated: if the distance between the input data x and the
winner is lower than similarity threshold.
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ðmdjocn
X

j ¼ 1::ma

mdj=maÞ⋀agej4age ð10Þ

where ma is the number of the activated neurons and age is a
predefine value. c is a scale factor which ranges between zero and
one. It is a user defined parameter that controls the network
growth (1 means minimum and 0 means maximum growth).

2.1. INNCC classification

Generally neural networks based on the SOM use the One-
Nearest Neighbour (1�NN) rule or the k-Nearest Neighbour rule
k�NN [29] to classify unknown patterns. In this work, we use the
posterior probability pðkj xiÞ and the output class label for xi can be
determined by (11).

y¼ argmaxk ¼ 1::KpðkjxiÞ ð11Þ
In order to incorporate the cluster information into pðkjxiÞ, it is
reformulated through the total probability theorem:

pðkjxiÞ ¼
X

j ¼ 1::m

pðk; jjxiÞ

pðkjxiÞ ¼
X

j ¼ 1::m

pðjjxiÞnpðkj j; xiÞ

PXki ¼ pðkj iÞ ¼
X

j ¼ 1::m

pðjj xiÞnpðkj jÞ ð12Þ

where k denotes the kth class, j represents the jth cluster, pðjjxiÞ is
the posterior probabilities of the presence of corresponding
samples in the input space and pðkj jÞ denotes the cluster posterior
probabilities of class membership. Notice that pðkj j; xiÞ has no
relationship with xi, and thus it can be simplified as pðkj jÞ. We use
the similarity threshold criterion in pðjjxiÞ computed as

pðjj xiÞ ¼
Ijinð1þdistðxi; jÞÞ�1

P
�j ¼ 1::m

ð1þdistðxi; jÞÞ�1 ð13Þ

where Iji is a boolean variable, its value given as

Iji ¼
1 if distðxi;wjÞoTj

0 else

�

In our approach pðkj jÞ ¼ ukj is computed during the training of
INNCC network. To associate each sample to a class, traditional
methods assign each one to a class with great membership degree
computed by the formula (11). We have used two selection
criteria; confidence criterion ε1A ½0;1� and uncertain criterion
εaA ½0;0:3�.

Algorithm 1. Computing labels

Input: PX, ε1, εa.
Output: Y.
For each unlabled sample i:

1. Search y by formula (11)
2. If PXyioε1 Then yi ¼ 0
Else
� Search y0 by formula (14)

y0 ¼ argmaxk ¼ 1::K4kayPXki (14)

� If ðPXyi�PXy0 iÞ4εa
Then yi ¼ y.
Else yi ¼ 0.

End for

2.2. INNCC training

Our method is an incremental approach. Thus in the initializa-
tion step the INNCC may be already exists or empty (new network
for new learning). During the training we denote the confidence
thresholds of the INNCC and the SVM by ε1 and ε2, respectively. If
the selected set T is empty, the value of ε1 will drop 0.05 at each
step. NU is the minimal number of unlabeled data and TMAX is the
maximum number of iterations. The proposed approach is
resumed by the following algorithm:

Algorithm 2.

Input: BA, INNCC, TMAX, c, age, τ, ε1, εa and ε2.
Output: INNCC.
Initialization:
�If the neural network is not empty, inactivate the existence
neurons.

�Initialize PX by: PXki ¼
1 if yi ¼ k
0 else

�
k¼ 1::K ; i¼ 1::N

� Add two neurons with reference vector chosen randomly
from the input pattern.

Training:
Repeat unit ðt ¼ TMAXÞ3ðjBA� jo ¼NUÞ
� Training INNCC one time with BA.

� Compute the output pðkjxiÞ of the INNCC for the unlabeled
dataset BA-.

Table 1
Instances number of each class.

Class 1 2 3 4 5 6 7

Instances 45 170 102 273 34 130 34

Fig. 3. Two moons training dataset.

Table 2
Algorithm parameters.

CASE TMAX ε1 ε2 σ τ age c

Off-line 10 0.9 0.5 O.5 20 20 0.25
Noise 10 0.9 0.5 O.5 50 50 0.5

A. Hebboul et al. / Neurocomputing 169 (2015) 89–9992

 

 

 



Fig. 4. The SVM and the INNCC result during the proposed method training with the two moons dataset. (a, b, c, d): The SVM result. (e, f, g, h): The INNCC result squat green
points represent neurons of class 1, diamond green points represent neurons of class 2 and circle green points represent unlabeled neurons. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.) (a) 8 Iterations, (b) 15 Iterations, (c) 18 Iterations, (d) 25 Iterations, (e) 8
Iterations, (f) 15 Iterations, (g) 18 Iterations, and (h) 25 Iterations.

Fig. 5. Two INNCC results of two different attempts without SVM.

Fig. 6. (a) TSVM result, (b) SVM training with INNCC result.

 

 

 



� Select a dataset T and its labels LT1 where each sample xi has
high certainty of belonging to one class in using the
algorithm computing labels.

� Compute the output f ðxiÞ of the SVM for the selected dataset T.
� Compute the labels LT2 for the selected dataset T where the

output of each sample xi by the SVM has high values, i.e.,
f ðxiÞ4ε2.

� Select the dataset T2 where each sample xi in the dataset T
has the same labels, LT1ðiÞ ¼ LT2ðiÞ.

� Update the current labeled set BAþ⟵BAþ [ T2.
� Update the current unlabeled set BA�⟵BA� �T2.

� Reduce the value of ε1 if T ¼⊘.
� tþþ .

2.2.1. Training INNCC one time
Because the training is on-line, we use a local variable TR, its

value is initialised by BA (training dataset). In each iteration a
sample is randomly selected from TR.

Algorithm 3.

Input: BA, INNCC, c, age and τ.

Fig. 7. (a) Artificial dataset Aggregation, (b) INNCC result, (c) The neurons number change during the training.
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Output: INNCC.

�TR⟵BA

�Repeat unit jTRj ¼ 0

1. Select randomly a sample i from the training
dataset TR.

2. TR⟵TR�fðxi; yi; PXiÞg

3. Search the winner neuron by formula (15):

Fig. 8. (a) Noisy training dataset, (b) INNCC result, (c) The neurons number change during the training.
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n¼ arg min
j ¼ 1::m

distðwj; xiÞ (15)

4. If ðdistðwn; xiÞoTnÞ then

Update the winner neuron n

Else

Add a new neuron.

5. After training of τ samples:

- Remove the useless activated neurons.

- Compute the similarity threshold of the
activated neurons as:

Ti ¼minj ¼ 1::m4 ia jdistðwj;wiÞ (16)

6. Increment the age of activated neurons.

2.3. Distance

We use a Gaussian kernel distance Kðx1; x2Þ:

Kðx1; x2Þ ¼ exp
�‖x1�x2‖2

σ

� �
ð17Þ

distðx1; x2Þ ¼ 2nð1�Kðx1; x2ÞÞ ð18Þ
where σ is a predefined value.

3. Experimental results

The proposed method has been tested on synthetic and real
datasets. The synthetic datasets are used to show the efficiency of
our approach to extract the topological structure of the input space
in the off-line, incremental or noise cases.

3.1. Synthetic datasets

We have tested the proposed method in the Aggregation data
set [30] and tow moons dataset. They are a 2 dimensions dataset.
The Aggregation dataset has 788 instances subdivided in 7 classes
where these classes have different shapes and instances number
(Table 1). The two moons dataset as its name, it has two
intertwined classes on shape of the crescent (Fig. 3).

We used the two moons dataset with 4 labeled data and 106
unlabeled data in each class to exhibit the efficacy of the proposed
method in the semi-supervised learning when the labeled data
cannot represent the underlying structure of the particular space
(Fig. 3). The algorithm parameters are presented in Table 2. Fig. 4
presents the SVM and the INNCC result during the proposed
method training. From these figures we have two observations.
First, as can be seen, the INNCC can extract the data structure in
the first iterations. Second the correctly labeled data are added to
the training labeled dataset during the training and this was
through cooperation between the SVM and the INNCC.

In order to show the SVM importance in the training of our
approach we tested the training of INNCC without SVM. Fig. 5
shows tow different results of INNCC without SVM, we can note
that the INNCC can extract the data structure topology, however it
cannot constantly classify correctly the unlabeled data without
SVM. Thus the SVM has maintained the stability of INNCC
classification.

To evaluate the performance of our approach, we run Trans-
ductive SVM (TSVM) [32] in using the implementation of SVMligh

[32], see Fig. 6. Through the results shown in the figure we can
observe two advantages of our method: First the efficacy of INNCC
in the classification best than TSVM. Second in off-line learning we
can benefit to two classifiers INNCC and SVM.

We used the Aggregation data set to show the efficacy of the
proposed method in the incremental learning case and in the
noise existence case. 10% of the dataset have been labeled and 90%
of dataset is unlabeled. The algorithm parameters are presented in
Table 2.

Fig. 7 shows the performance of INNCC in the topology
structure representation. Fig. 7c gives how the number of neurons
changes during training. The number of neurons increases. It is
noticed that it is stable after the training of all the data. Random
noise (25% of useful data) has been added to the data set to
estimate the INNCC performance in noisy environment. As shown
in Fig. 8a, overlaps exist among classes; noise is distributed over
the entire data set. The proposed method represents efficiently the
topology structure and gives typical prototype neurons of every
class (Fig. 8b). Fig. 8c shows the neurons number stabilization even
in the noise existence case.

In order to show the INNCC performance on on-line learning,
we subdivide Aggregation dataset in 4 parts (A, B, C and D), as
shown Fig. 9, and the INNCC learns the parts one after one.

Fig. 10 shows the capacity of the INNCC in the on-line learning.
INNCC learns the new data without relearning or removing the
already acquired data.

Fig. 11 shows the change of the neurons number during the on-
line training. The neurons number increments when the new data
arrive. For each part, the neurons number stabilizes after a few
iterations.

3.2. Real datasets

The performances of the proposed method in off-line learning
are studied for four UCI dataset [31] presented in Table 3. Each
dataset is randomly subdivided into two subsets: 40% for training
and 60% for testing. We change the labeled data percentage to
show its impact in the INNCC classification performance. The
accuracy of correct classification coefficient (ACC) computed by
formula (19) is used to evaluate the method performances. The
algorithm parameters are presented in Table 2. We repeat the
training 10 times and we compute the mean and the standard
deviation of ACC. The results are shown in Table 4, where α is the
labeled data percentage in the training data set.

ACC ¼

P
i ¼ 1::N

δðy; f ðxÞÞ

N
ð19Þ

Fig. 9. Artificial dataset aggregation subdivided into 4 parts (A, B, C, and D).
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where

δðy; f ðxÞÞ ¼ 1 if y¼ f ðxÞ
0 else

�

where y is the real label of x and f(x) is its calculated label. INNCC is
an incremental neural network. It is able to train new data without
forgetting old data. To assess INNCC performance in on-line
learning, IRIS data set is subdivided in two subsets as show in
Table 5. The subsets do not contain the data of the same classes.

After each subset training, INNCC is tested on the two subsets. The
training is repeated 10 times, ACC standard deviation and mean
are computed. The results are shown in Table 6. After P1 training
the ACC of P2 is approximately 0.333 because the P2 contains 1/3
of data of class 2; The INNCC has not been able to classify the class
3. It does not exist in P1. However after the INNCC training on P2
the ACC of P2 increased and the ACC of P1 remains stable. From
these tables we have three observations. First, as can be seen, the
proposed method gives good results in classification in off-line

Fig. 10. (a, b, e ,f): the parts of training dataset, (c, d, g, h): INNCC results.
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learning. Second, there is a weak impact of the labeled data
percentage. Third, the performance of the proposed method in
incremental learning is very good. This shows that our algorithm is

robust and depends less on the initial training data even if the
initial model assumption is not consistent with the real data space
structure.

4. Conclusion

In this paper, a new learning approach of incremental neural
network improved by SVM is defined. This network is built
automatically without any a priori information on the number of
neurons. It ensures the both classification and clustering, it is able
to learn new data without forgetting or relearning the old ones.
We introduce the type of neuron to assure the incremental case,
where the inactivated neurons represent the old data and the
neurons are activated by the new data. We used the cluster
posterior probabilities of classes to create a relation between the
clusters and the classes. We use the SVM to improve and accel-
erate the INNCC classification during its training. The experiments
on synthetic datasets and real datasets demonstrate the incre-
mental performances. The experiments on synthetic datasets and
real datasets demonstrate the incremental performances.
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