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a b s t r a c t

Over the last decade there has been an increasing interest in semi-supervised clustering. Several studies
have suggested that even a small amount of supervised information can significantly improve the
results of unsupervised learning. One popular method of incorporating partial supervised information is
through pair-wise constraints indicating whether a certain pair of patterns should belong to the same
(Must-link) or different (Dont-link) clusters. In this study we propose a novel semi-supervised fuzzy
clustering algorithm (SSFCA). The supervised information is incorporated via a method quantifying
Must-link and/or Dont-link constraints. Additionally, we present an extension of SSFCA that allows the
algorithm to automatically detect the number of clusters in the data. We apply SSFCA to the intrinsic
problem of gene expression profiles clustering. The advantageous properties of fuzzy logic, inherited to
SSFCA, allow genes to belong to more than one group, revealing this way more profound information
concerning their multiple functioning roles. Finally, we investigate the incorporation of prior biological
knowledge arriving from Gene Ontology in the process of selecting pair-wise constraints. Simulations
on artificial and real life datasets proved that the proposed SSFCA significantly outperformed other
standard and semi-supervised clustering methods.

1. Introduction

The importance of clustering algorithms and analysis in
modern science is signified by the broad spectrum of their
applications in various fields ranging from economy to meteorol-
ogy and from physics to biology. In certain scientific fields like
computational biology, clustering has been frequently employed
as a useful exploratory technique allowing biologists to identify
potentially meaningful relationships among genes or proteins.

Indeed, clustering was, and still remains one of the most
popular methods for the analysis of gene expression from micro-
array experiments, used to provide insight into the structure of
the data and to aid at the discovery of biologically related groups
of genes [1]. Initial computational efforts employed classical
clustering techniques (see Ref [2] for an extensive overview) for
grouping genes according to their expression patterns, based on
the experimentally validated assumption that genes involved in
the same biological process exhibit similar patterns of variation.
In most of the cases however, certain peculiarities of the problem
at hand, such as the large degree of complexity in the measured
entities and the amount of inherent noise present in microarray
experiments, prevent standard clustering methods to provide
adequate results in terms of pattern similarity and biological
correlation.

A way to circumvent these problems is to incorporate addi-
tional sources of information. Several studies in the field of
functional genomics have shown the advantages of integrating
different types of biological data [3]. Nevertheless, in most of the
so far developed clustering applications, prior biological knowl-
edge is totally disregarded, while in combination with the
similarity of expression profiles could lead to much better results.

An algorithmic family that could utilize prior knowledge on a
certain field is the one of semi-supervised algorithms. These
methods stand between purely unsupervised and fully supervised
methods, benefiting from the advantages of both. Hence, they can be
viewed as hybrids that incorporate partial prior information about
the patterns, and thus do not suffer from the difficulties of
supervised methods that have to be applied on fully annotated
datasets. Indeed, while full pattern annotation can be an infeasible
feature (at least for the majority of the real-life datasets) most of the
times and irrespectively of the application, the user is able to know
(e.g. from an outside source) whether some patterns should belong
to the same cluster or not, at least for a small fraction of the whole
dataset. Towards this direction, an always increasing number of
studies that deal with semi-supervision, have shown that even a
relatively small amount of supervised information can significantly
improve the accuracy of clustering [4–6].

There are various methodologies for incorporating prior or
additional knowledge in semi-supervised clustering. Different
algorithms have been implemented pending on whether the
information is given in terms of partial labelling [5,7] or in the
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form of pair-wise constraints, indicating whether some patterns
should be located in the same cluster or not [8].

An additional discrimination of semi-supervised clustering
algorithms is based on the number of phases implemented.
Indeed there are algorithms that incorporate an intermediate
phase, in which a metric is trained using the provided constraints
or labels and subsequently used by an existing standard cluster-
ing algorithm [9]. In other methods, the need for a two phase
clustering process is avoided, by integrating a term, in the main
objective function of an algorithm that aims in satisfying the
provided constraints [7,10].

Following the second methodology we propose a novel semi-
supervised fuzzy clustering algorithm (SSFCA), based on pair-wise
constraints. Key concept of SSFCA is the quantification of con-
straints that are retained and/or violated for every member of a
certain cluster. Specifically, in the proposed method, guidance in
clustering is provided following an approach where additional
information (or prior knowledge) on a specific domain, is given on
sets of either Must-link or Dont-link constraints or both. Hence-
forth, we will suppose E to be the set of Must-link constraints to
be given in pairs ðxi,xjÞAE where patterns xi and xj should be
assigned to the same cluster. We will also let D be the set of pair-
wise Dont-link constraints ðxi,xjÞAD such that xi, xj should be
assigned to different clusters. At this point we should note that
while pattern labelling may be difficult to be known a priori, most
of the times it is less complicated to know whether or not some
patterns should be members of the same group.

The proposed approach allows us to profit from the major
advantages of fuzzy methods [11], over the crisp techniques. One
important aspect of fuzzy logic, bearing significant importance in
gene expression clustering, is that it facilitates the identification
of overlapping clusters. Hence, by allowing genes to be members
of various clusters with a variable degree of membership, fuzzy
methods can, more suitably account for the complex relations
governing gene regulation.

One important topic in semi-supervised clustering concerns
the selection of constraints used to guide the clustering process.
In the literature there are various techniques for selecting con-
straints that could be roughly divided in two general categories
pending on whether the constraints are selected a priori [7] or
actively [12]. In the later case (that could substantially increase
the computational complexity of the overall method) the con-
straints are selected during the online operation of an algorithm.
A common characteristic in most of the studies on this subject
(using either one of the two categories) is that they do not
incorporate external sources of supervised information. The
selection is based solely on similarities and dissimilarities con-
cerning the patterns to be clustered (i.e. internal criteria).

Despite that both of the aforementioned methods of selection
could be incorporated in the overall proposed methodology, key
goal of this study is to focus on the efficiency of SSFCA. Hence we
utilize simplified frameworks of a priori selection, and experi-
ment on both internal criteria and external sources of informa-
tion. Several types of biological data could serve as a source of
external information like genetic or protein interactions; Gene
Ontology Consortium [13] however currently serves as the
dominant approach for machine-legible functional annotation.
Gene ontology (GO) data provide detailed information, about a
large number of genes, and is considered to be of high quality
since it is manually inspected to ensure accuracy.

Another issue that is of high interest is the one of automati-
cally determining the number of clusters in the data. Indeed, in
most of the clustering algorithms either purely unsupervised or
semi-supervised, the exact number of clusters has to be given as
one of the input parameters. This can be a serious drawback
especially in the problem we are studying since a clustering

algorithm is expected, to discover significant groups among genes
that will lead to further biological studies.

We resolve this problem by integrating in the proposed algo-
rithm, the technique of competitive agglomeration [14] suitably
implemented under the semi-supervised frame. Via this extension,
SSFCA initiates its operation from an overestimation of the number
of centroids and through a process of deleting redundant clusters,
finally determines the best number for the problem at hand.

Simulations performed on artificial and real-life datasets
proved that SSFCA acquires highly similar groups of patterns
(expression profiles) by significantly outperforming other unsu-
pervised and semi-supervised algorithms.

2. Algorithms and methods

In this section we will present the methodology we follow to
utilize prior information on a specific domain, given in the form of
Must-link and Dont-link constraints, via a score quantifying the
number of constraints that are retained or violated within a
certain cluster for each one of its members. Subsequently we will
provide detailed description for the SSFCA algorithm and how the
aforementioned score is integrated in the fuzzy clustering process
to guide clustering. Finally we will review how the technique of
competitive agglomeration is integrated in the basic objective
function of SSFCA, via an extension of the standard cardinality to
the semi-supervised field, allowing the algorithm to automati-
cally determine the number of clusters present in a dataset.

2.1. Quantifying constraints

As we have already mentioned, in the method we propose,
guidance in clustering is provided via sets of either Must-link (set
E) or Dont-link (set D) constraints or both. Under this approach, a
specific pattern can be associated with more than one pair and/or
kind of constraints. We could for example have three constraints
that would impose some pattern to be in the same group/class
with two patterns, while at the same time belong to different
classes with the third pattern. Hence, we will insert a new score
metric named pattern’s constraints degree (pcd) based on the
number of constraints that are retained and/or violated for a
specific pattern j within a certain cluster i

bij ¼
Rij$Vij

Tj
ð1Þ

where Rij and Vij are the numbers of constraints that are retained
and violated respectively for pattern j in cluster i, while Tj is the
total number of constraints implicating pattern j.

We are using Tj instead of Tij (that would have been the total
number of constraints for pattern j in cluster i), since we are
interested in having clusters whose members satisfy the majority
of the overall constraints implicating them.

Concerning the range of value for bij, it is

bij ¼

1, fRij-Tj4Vij-0g
0, fRij ¼ Vij3Tj ¼ 0g
$1, fRij-04Vij-Tijg

8
><

>:
ð2Þ

As we can depict from Eqs. (1), (2), the range of pcd for every
member of the cluster is within $1 and 1. When bij is unity or near
that value, then most of the constraints regarding the specific pattern
are retained within the cluster, while when the score approaches $1,
most of the constraints are violated. At this point we should note that
there could be cases where the number of constraints retained
matches the number of violations or that simply there are no pair-
wise constraints regarding a specific pattern in neither of the sets E
and D. In cases such as these the value of pcd equals zero and
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especially in the latter case, we regard the pattern neutral in respect
to the provided supervised information.

2.2. SSFCA: combining fuzzy clustering and semi-supervision

Fuzzy clustering is a partition–optimization technique that
aims to group data based on pattern similarity in a non-exclusive
manner by permitting each sample to belong to more than one
cluster. Considering a finite set X¼{x1, x2,y, xN} of N vectors in an
D-dimensional space, the problem is to perform a partition on this
dataset, into C fuzzy sets with respect to a given criterion. One of
the most widely used fuzzy clustering methods is Fuzzy c-means
(FCM) due to its efficacy and simplicity [15].

SSFCA, resolves a dual goal where on the one hand minimizes
the distance among the patterns and the corresponding centroids
while on the other, is simultaneously guided by the pairs of
constraints towards the determination of more accurate and in
certain cases, pending on the source of semi-supervision, more
meaningful clusters. Hence, the basic idea of SSFCA is to expand
the operation of the well known FCM algorithm into the semi-
supervised domain by integrating pcds into its objective function,
which is mathematically described as

JðU,V ;X,PÞ ¼
XC

i ¼ 1

XN

j ¼ 1

am
ij d2

ij ð3Þ

where aij is defined as

aij ¼ nuij$ð1$nÞbj i,jð Þ ð4Þ

bij is the pcd and n is a small positive number ranging from 0 to 1.
Objective function in (3) is subjected to the following constraints:

XC

i ¼ 1

uij ¼ 1, 8jA ½1,. . .,N& ð5Þ

where uij represents the degree of membership of pattern j to the
centroid/prototype vi, and m is an exponential weight that
controls the fuzzification degree of the membership (partition)
matrix (throughout this study we follow that m¼2). While a large
repertoire of distance metrics could be incorporated in Eq. (3), in
this study dij is the square Euclidean distance between the feature
vector j and centroid i. Prior proceeding with the analysis of the
objective function in Eq. (3) we will discuss about function j and
parameter n described in Eq. (4).

Under the fuzzy logic formalism, each pattern is a member of
all existing clusters up to a certain degree indicated by the
corresponding membership value. As a result of this, all pairs of
pattern constraints should be checked for violations throughout
all clusters. We can however consider that a pattern is part of the
cluster for which it has the maximum membership value. Hence,
we can check for pattern violations, on one cluster per pattern.
This is accomplished using function j, which returns the pcd
value of a pattern in a certain cluster only if that pattern has a
maximum membership value on that cluster, while in the
opposite case a zero value is returned by j, which is described

bjði,jÞ ¼
bij, if argðmax

k
ukjÞ ' i

0, else

(
ð6Þ

Similar techniques have been used before [7] and contribute to
the faster convergence of the algorithm, reduce the computa-
tional complexity, and at the same time do not harm the general-
ity of the solution. For reasons of simplicity henceforth we will
refer to bj(i,j) as bij.

A key parameter in SSFCA is n (4), which controls the degree
up to which the constraints influence the overall clustering
process. Specifically, the smaller the value of n is, the larger the

influence of the pcds and hence the supervised information in the
overall process.

There are several strategies that can be adapted for setting the
value of n. For instance, if we have a large number of constraints and
we are certain for the accuracy of the provided semi-supervised
information we could consider n as a constant with a small value. In
this study however, we follow a framework where n should have a
small value during the first iterations, so as to guarantee the initial
formulation of structural coherent clusters in terms of retained
constraints. After these first steps of clusters initialization, based
mainly on the supervised information, there should be a gradual
increase of its value so as to allow an analogues degree of
importance for patterns similarity and constraints detainment.
Finally, after the supervised information has fulfilled its purpose of
guiding the clustering process, the value of n should approach a
value near its maximum (e.g. a value near unity) to allow the
algorithm to converge based mainly (or even purely) on the
similarity of patterns within the clusters.

A simple function simulating the behaviour we described
regarding parameter n is

nðtÞ ¼ ðnF$n0Þ (
tmax$t

tmax
þnF ð7Þ

where tmax is the maximum number of iterations we allow the
algorithm to run, n0 is the initial value of parameter n, and nF is final
value of n and t is the index of current iteration. Functions such as
the one described in Eq. (7) have been used in similar settings [16].

Following the methodology described in part I of the Appen-
dix, we solve the minimization problem described by Eqs. (3), (4)
and derive the update equations of SSFCA. We will, first, review
the equation concerning the membership values given by

ust ¼ upatt
st þuconstr

st ð8Þ

where s and t represent a specific pattern and centroid, respec-
tively. The first term of Eq. (8) is responsible for the standard
updating of the membership matrix, by taking into account solely
the relative distance of a certain feature point to all prototypes,
and follows the standard FCM update equations:

upatt
st ¼

ð1=d2
stÞ

1=m$1

PC
k ¼ 1 ½1=d2

kt&
1=m$1

ð9Þ

SSFCA handles the provided semi-supervised information
towards a better partition of the initial population, to clusters
whose members retain as many as possible of the provided
constraints, through the second term of the basic updating
formula (8), described as

uconstr
st ¼

1$n
2n

1

d2
st

! "1=ðm$1Þ bst

1
d2

st

# $1=ðm$1Þ $Bt

0

B@

1

CA ð10Þ

where Bt defined as

Bt ¼
PC

k ¼ 1 bktPC
k ¼ 1 ð1=d2

ktÞ
1=ðm$1Þ

ð11Þ

is the weighted average of pcds for pattern t, and evaluates the
constraints (retained or violated) regarding pattern t throughout
all clusters. As we can depict from Eqs. (10) and (11) both bst and
all pcds calculated in Bt are weighted by the distance of t from
centroids enabling this way to consider their pattern similarity.

The constraint term, augments or suppresses memberships
values of a specific pattern to a certain cluster, according to
whether or not, the pattern is best suited in the cluster (in terms
of retained constraints), when compared to all other clusters.
SSFCA compares the weighted pcd value of pattern t in cluster s
with the weighted average pcd of the same pattern. If the former
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is larger than Bt , then the membership value of pattern t in cluster
s is increased, while in the opposite case is decreased. At this
point we should clarify that (see also Section 2.1) if there are no
constraints for some pattern, then uConstr

st ¼ 0 and its membership
value is influenced only by the proximity of that pattern towards
the corresponding sth prototype.

Regarding the updating of the centroids (details in part I of the
Appendix) we have

vi ¼
1

PN
j ¼ 1 am

ij

XN

j ¼ 1

am
ij xj ð12Þ

where i, and j correspond to the ith cluster and jth patter, respectively.
An important final comment on SSFCA, is that by providing

different functions for aij and/or bij than those described in Eqs.
(1) and (4), we end up with different versions of SSFCA, and hence
with a family of semi-supervised fuzzy clustering algorithms.

2.3. SSFCA and agglomeration process

In this section we will present an extension of SSFCA that aims
in allowing the algorithm to automatically determine the number
of clusters in a dataset. The proposed extension integrates the
technique of competitive agglomeration process in SSFCA by
including a regularization term to the objective function
described in Eq. (3), which becomes

J0ðU,V ;X,PÞ ¼
XC

i ¼ 1

XN

j ¼ 1

a2
ijd

2
ij$g

XC

i ¼ 1

XN

j ¼ 1

ðnuijþð1$nÞbijÞ

2

4

3

5
2

ð13Þ

subjected to the constraints in Eq. (5). As we can depict from
Eq. (13) m has now a fixed value of m¼2. Parameter g is a factor
that controls the agglomeration process and we shall deal with
the range of its value later in this section.

In standard fuzzy clustering, the cardinality of a cluster is the sum
of the membership values for a specific cluster against all patterns

Cs ¼
XN

j ¼ 1

usj ð14Þ

Cardinality is a measure of how dense a certain cluster is.
However, in our integrated environment, the coherency of a
cluster does not depend solely on the distance of the patterns
from the centroid, but also from the number of retained con-
straints among the members of the cluster. Hence we insert the
term Composite Cardinality (CC) as an extension of standard
cardinality, in the sense that the membership of every pattern
in a specific cluster is enriched by its corresponding pcd value

Ks ¼
XN

j ¼ 1

nusjþð1$nÞbjðs,jÞ

h i
ð15Þ

where by setting n¼1, we get the definition of cardinality (14).
Inspection of Eq. (15) makes clear the fact that our goal is to have
clusters with large values of CC.

We can now proceed to the presentation of the solution
regarding the minimization of the objective function J0. As detailed
described in part II of the Appendix, the updating equations for the
membership values of the reformulated SSFCA described in Eq. (13)
now becomes

ust ¼ upatt
st þuconstr

st þuclust
st ð16Þ

where the first and second term are described via Eqs. (9) and (10),
(11), respectively if we set m¼2.

The analytical expression of the final term of Eq. (16) is given by

uclust
st ¼

g
nd2

st

ðKs$Kt Þ ð17Þ

where Kt is described by

Kt ¼
PC

k ¼ 1 1=d2
kt

% &
KkPC

k ¼ 1 1=d2
kt

% & ð18Þ

and describes the weighted average of all clusters composite
cardinalities. Weights reflect the proximity of feature point xt in
question from the centroids and it is an additional factor to consider
pattern similarity. Hence, the last term of the main updating rule is
responsible for comparing the CC, of a certain cluster with the
average CC of all clusters. As we can depict from Eq. (17), the
outcome of this term, can be either positive, in the case where the
CC of a certain cluster, is higher than the average CC value, or
negative in the opposite case. This technique allows the algorithm to
reduce the CC of spurious clusters, by reducing the membership
values of its members. Later on in SSFCA operation and if the CC of a
cluster, drops below a certain threshold, this cluster will be deleted.

We have already mentioned, that g in Eq. (13) is a parameter
controlling the agglomeration process. Hence, its value should be
slow in the beginning to encourage the formation of small
coherent clusters and gradually should be increased to promote
agglomeration. Finally, when the number of clusters approach an
appropriate value, parameter g, should slowly decay to allow the
algorithm to converge. This ranging in the values of g can be
simulated by a function of the form

gðtÞ ¼ exp
$t
t

! "PC
i ¼ 1

PN
j ¼ 1 a2

ijd
2
ijPC

i ¼ 1

PN
j ¼ 1 a2

ij

ð19Þ

where t represents the current iteration and t is a constant.
Functions like (19) controlling the agglomeration process have
been used in similar schemes [8,14] and the value of t was set
equal to a small integer value (e.g. 10).

Since there is not a distance parameter in the regularization term
we have added in SSFCA the equation concerning centroids update,
is the same with the one described in Eq. (12), if we substitute m¼2.

Next, we provide a description of the proposed algorithm in
the form of pseudo-code:

Semi-supervised fuzzy clustering algorithm—SSFCA

Step 1: Set an overestimation value of Coves (2o¼Coveso¼N).
Set the iteration index t¼0, set t0¼0, randomly initialize the
fuzzy Coves partition matrix U(t), the value of CCThres, the value
of tdel, a termination criterion e and the maximum number of
iterations Max_iters. Calculate n(0), g(0).
Step 2: Set t¼tþ1. Calculate the centers of the fuzzy clusters
{vi

(t)9i¼1, 2, y, Coves} based on U(t$1) and Eq. (12) with m¼2.
Step 3: Calculate the new partition matrix U(t) using {vi

(t)9i¼1,
2, y, C} and eq (16).
Step 4: Del¼ |. For i¼1yCoves

Step 4.1: Calculate CC value for current cluster i.
Step 4.2: If CCioCCThres Del¼Del [ CCif g
Step 5: Sort Del. If 9Del9¼¼1 or t04tdel discard cluster vj

where j¼Del{1} and update the number of clusters to Coves

¼Coves$1 and set t0¼0, Else toþ¼1.
Step 6: Calculate D¼:U(tþ1)$U(t):¼maxi,j9uij

(tþ1)$uij
(t)9. If

Doe or t¼¼Max_Iters, then Stop, Else calculate n(t), g(t)
and go to Step 2.

Key goal of the proposed extension in SSFCA, is to allow the
algorithm, to detect the correct number of centroids after initiating
from an overestimation Coves. This goal is resolved through a process
of deleting redundant clusters based on the corresponding CC values.
In applications where agglomeration has been incorporated for
similar reasons [8,14], the cardinalities of the centroids are checked
per iteration and clusters with values smaller than a pre-specified
threshold, are deleted. However, as the complexity of the data
increases and especially in our case where we expand the standard
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cardinality to CC, a scheme such as this may prove to be inefficient.
Hence we adapt a slightly different method where, if there are more
than one clusters whose CC values is less than the pre-specified
threshold CCThres, SSFCA concludes that there was not enough time
for convergence in the current state and does not proceed to any
deletions. Nevertheless, if after a predetermined number of iterations
tDel, the scheme we described still stands, the cluster with the lowest
CC value is deleted.

3. Results

In this part of the paper we describe the datasets, we have used,
both real and artificial, as well as the measures we employed to test
the validity of the proposed algorithm. We have compared SSFCA
with two standard clustering algorithms FCM, and K-means [17], as
well as CA [14] that we used to compare the results of cluster
number determination. Additionally we used, HMRF-KMeans [18], a
method based on hidden Markov models [19] and COP-Kmeans
(CPK) [20] to check our algorithm with other semi-supervised
methods. CPK however, provided better apodosis than the other
two methods and hence, for reasons of clarity and simplicity, in the
presented results we only use CPK algorithm.

Concerning the selection of the constraints, we provide evi-
dence that even when simplified frameworks are employed, and
irrespectively of whether we use both types of constraints or
solely Must-link, SSFCA attained improved clustering results. In
all of the simulations performed we have provided a number of
constraints ranging from a minimum of zero to a maximum of
30% of the total number of patterns in a dataset. We performed 30
replications for each one of the algorithms employed in this
study, and the average of the validity measures were used in all
of the results presented below.

The maximum iterations number for SSFCA was set to 100 and
for all simulations we present in this study the algorithm converged
before reaching this limit while a decrease in the value of the
termination criterion from its value setting we used (1e$03) did not
present significantly improved results. Additionally, unless other-
wise stated, the minimum value of n, n0 was set to 0.3 and its
maximum nF to 0.9. Lower values of n0 and larger values of nF could
some time lead to an increase of the iterations needed for SSFCA to
converge and terminate its operation (especially with a large
number of provided constraints, larger than 20% of the total
patterns), with no special efficiency improvement.

3.1. Artificial dataset (AD)

This dataset has been artificially created initiating from real
data as described in Ref. [21]. It consists of 400 patterns across 10
different experimental conditions. The dataset has 10 clusters.

3.2. Y5 (RD1)

In this data set first published by Cho et al. [22] we have the
expression levels of more than 6000 genes, measured in 17 time
points during two cell cycles of Yeast. As in Ref. [22], we have
used a specific subset, abbreviated as Y5, consisting of 384 genes
[19] visually identified to peak at five distinct time points, each
one representing a certain phase of the cell cycle (Early G1, Late
G1, S, G2, and M). All of the Y5 set member genes are annotated.
The expression levels of each gene were normalized.

3.3. Yeast sporulation (RD2)

This data set [23] consists of more than 6400 genes measured
across seven time points (0, 0.5, 2, 5, 7, 9, and 11 h) during the
sporulation of the budding yeast.

All genes that had more than 20% of their expression values
missing were excluded from further analysis. Applying a thresh-
old of 1.6 for the root mean squares of the log2-transformed
values, we came up with 474 genes [24] whose expression
patterns significantly changed.

3.4. Evaluation measures

We have employed several metrics to test the apodosis of
SSFCA, pending on whether the labelling of the patterns in a
dataset was known or not.

Normalized mutual information (NMI) [25] is a measure on the
efficiency of a clustering algorithm to reconstruct an underlying
label distribution in the data, and is defined as

NMI¼
HðCÞ$HðC9C0Þ
ðHðCÞþHðC0ÞÞ=2

ð20Þ

where C and C0 are random variables representing the cluster
assignments of the patterns and the known class labels of the
patterns, respectively. The nominator of Eq. (20) is the mutual
information between C and C0, H(C9C0) is the conditional entropy
of C given C0 while H(C) and H(C0) is the Shannon entropy of the
corresponding variables.

Additionally we have used standard information retrieval
measures like sensitivity and specificity as well as the adjusted
rand index (ARI) [26]

ARI¼
2ðad$bcÞ

ðaþbÞðbþdÞþðaþcÞðcþdÞ
ð21Þ

via variable a we represent the number of pairs that are members
of the same cluster in C and same class in C0, with b pairs with the
same cluster but different class, c different class and cluster, and
finally d different cluster but same class.

To evaluate the results of the algorithms on RD2 dataset for
which no information about the labeling of the patterns was
known we used Silhouette index (SI) [27]. SI is a cluster validity
index that is used to judge the quality of any clustering solution C.
It is a measure on the compactness and separation of clusters and
its value varies from $1 to 1, where higher values indicate better
clustering result.

3.5. Determining the number of clusters

Initially we tested the apodosis of SSFCA concerning the
correct determination of the number of clusters. We have used
datasets AD and RD1, for which the labelling of the patterns was
known and thus we tested the algorithm in a more controlled
setup for both real and artificial data.

To select constraints for AD and RD1 we created all pairs of
patterns that share the same label, and called the resulting set
Must. Additionally we created another set, formed of all pairs that
were not members of the same class and called it Dont set. The
total number of constraints N requested was provided as input.
This number corresponds to a specific percentage of the total
number of patterns in a dataset. Finally we created the Must-link
constraints by random selection of NC¼N/2 pairs from the Must
set. Analogously we created the set of Dont-link constraints by
randomly selecting NC pairs from the Dont set. In schemes like the
one we described, there could be cases where more than one pair
of constraints is created for a specific pattern. Cases such as this
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cause no problem to the operation of SSFCA since they are
handled from the pcd of the pattern (Section 2.1).

As we have described in detail in Section 2.3, the proposed
algorithm initiates its operation from an overestimation of clus-
ters COVES. In every iteration of SSFCA, the CC values of all clusters
are calculated and under certain conditions, the cluster with the
worst CC (lowest value) is deleted. This iterative procedure is
repeated until the algorithm reaches a number of centroids that
correctly fit the data.

In the simulations performed, we have set the initial value of
COVES to be 2, 3 and 4 times larger than the actual number of clusters
(Cact) in the datasets. In Fig. 1 we can depict that SSFCA (in all range
of provided supervision), determined the correct number of clusters
for both datasets (i.e. 5 for RD1 and 10 for AD). The CA algorithm we
used for comparison failed to detect the correct number.

Before we further continue the analysis of the results we should
mention at this point that we have performed simulations with
larger and smaller values of COVES. Specifically we have increased
COVES up to 15% of the number of patterns in the datasets and in 70%
of the simulations in all datasets (data not shown) the algorithm
converged to the correct number of clusters with an increase
however in the number of iterations (i.e. up to 150) needed for
convergence. For values of COVES smaller than Cact the algorithm in all
simulations did not perform any cluster deletion.

In general, the larger the dimensionality and complexity of a
specific dataset, the more difficult becomes the clustering problem
and hence the number of iterations needed for the algorithm to
converge to a solution is increased. This conclusion can also be
derived by inspection of Fig. 1. Specifically, we can conclude that the
iterations needed by SSFCA to detect Cact, increase as the initial COVES

value becomes larger. Furthermore, the increased complexity of real
dataset RD1, accounts for the larger number of iterations spent on a
certain number of clusters (prior deletion) in comparison to the
artificial AD. However when COVES was initially set to 20, for both AD

and RD1 (as we can depict from the illustrated cases of the same
figure), the corresponding iterations were more in the artificial
dataset than in RD1. This observation is explained, if we consider
that the initial value of Coves (i.e. 20) was closer to the actual number
present in AD rather than RD1. Another example of this property is
illustrated in Fig. 1(B), corresponding to RD1. The algorithm needs
7 iterations prior deciding on deleting a certain cluster, when
COVES¼10 and only 4 when COVES¼20. Similar scheme stands for
AD dataset.

Hence it becomes obvious, that SSFCA needs more time to
delete a certain cluster, when initial COVES value approaches Cact.
Indeed, when the process initiates from a large overestimation of
the actual number, more clusters will have low values of CC and
thus, it is easier to select the next one to be deleted. It is
interesting, however, that in this case, SSFCA does not increase
the iterations prior a cluster deletion when it approaches Cact. This
property is elucidated by considering that SSFCA has spent much
time adjusting the centers of the clusters (e.g. SSFCA spent 34
iterations to reach a number of clusters equal to 10 when initiated
from 20 in RD1) thus most of the centroids fit the data much
better and hence the algorithm needs less time in deciding the
next cluster for deletion.

During SSFCA process, when a certain cluster is deleted, the
patterns that were members of the corresponding centroid will
become members of one or more of the remaining centroids.
Hence, the locations of those centroids in the search space will be
influenced, during the first iterations following the deletion,
before converging to a new well established location. Based on
the definition we gave for composite cardinality, we deduce that
we could monitor how SSFCA adjusts the centroids to better fit
the data, by tracking the CC values of the remaining (after every
deletion) centroids.

Fig. 2 presents a detailed recording of CC values for the centroids
of RD1 dataset. Specifically we can depict the course of CC variations

Fig. 1. In this figure we can depict the cluster deletion process of SSFCA through which the correct number of centroids is determined, for (A) AD and (B) RD1 datasets. In
both datasets we have set the overestimated number of clusters to be 2, 3, and 4 times larger than the actual number.
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of the 5 final centroids (represented as C1–C5, respectively) that
were present throughout the process of consecutives deletions after
initiating from an overestimation of 10 clusters.

In the 1st iteration, all clusters have various values of CC,
ranging from 5 to 35 due to initialization. After only two
iterations all clusters stabilize around a temporary threshold that
is maintained for the next 10 iterations where a centroid deletion
is performed. After the tenth iteration we can depict a change in
the value of the clusters C1 to C4 while the CC value of C5 remains
intact. We observe the next significant variation of CCs from
iteration 29 to 35 where the number of clusters drops from 7 to
the actual number of 5. After iteration step 40, the CC values of all
clusters, stabilize around their final value, indicating that the
algorithm has concluded on the number of clusters and continues
its operation towards convergence.

As a final comment we have to mention that the threshold
values for deleting a cluster CCThres and the iterations necessary
prior deletion tDel were experimentally determined from a wide
range of different settings and were finally both set to 10 for all
performed simulations. The algorithm presents highly similar
behavior if we increase or decrease around 30% of these thresh-
olds. If we decrease or increase further those values, the algorithm
tends to produce an analogously larger or smaller number of
clusters, respectively. In other words these values provide a
means for a more detailed or coarse final clustering.

3.6. Clustering results

We will now review in detail the clustering performance of
SSFCA in comparison to the rest of the algorithms employed. The
selection of the constraints regarding RD1 and AD was the same
with the one we described earlier.

As we can depict in Fig. 3(A) and (B) corresponding to datasets
AD and RD1 respectively, SSFCA obtained better results than the
other algorithms in terms of the NMI metric. Results in Fig. 3 are
also confirmed from Table 1 where the proposed algorithm system-
atically had better performance in terms of sensitivity, specificity
and ARI.

Inspection of Table 1 leads to the conclusion that SSFCA had
very good apodosis concerning specificity in all ranges of super-
vised information for both datasets AD and RD1. In comparison to
specificity, sensitivity had smaller values for small percentages of
provided constraints. However, as the provided supervision was
increased, the value of specificity was also systematically
increased, and after 20% we had large values (i.e. more than 0.8)
for both metrics and datasets.

In Fig. 3(A), we can see that between 0% and 6% of the provided
constraints all algorithms displayed similar results of effective-
ness. After that percentage, SSFCA systematically improved its
performance up to a value of NMI equal to 0.95. On the real
dataset, Fig. 3(B), all algorithms produced results with lower
values of NMI, a fact indicating the increased complexity of RD1
in comparison to AD. However, it is evident that even the smallest
amount of supervision can provide a significant improvement in
the outcome of SSFCA.

At this point we have to stress on the fact that the way AD is
constructed and RD1 is formulated they consist of groups of genes
with similar expression, such that each one of its members has a
peek in a certain time point (or points) throughout its expression
pattern and hence a large value of the NMI metric reflects to a
better clustering of the dataset. These results not only demon-
strate the improved behaviour of the proposed algorithm but also
indicate the benefits of semi-supervised clustering, especially
when applied in datasets of increased complexity.

Fig. 2. Variation of composite cardinality (CC) values for the 5 centroids of RD1 dataset that were present throughout the cluster deletion process after initiating from Coves¼10.
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An important parameter of SSFCA that controls the degree up
to which the provided constraints influence the clustering pro-
cess, is n. In particular the smaller the value of n, the larger
confidence we assign to the provided constraints (detailed dis-
cussion in Section 2.2). Hence we have conducted an experiment,

based on RD1 dataset, where we have tested the effect of n in the
overall process. Originating from the same value of n0¼0.3 we
have tested SSFCA with different values nF and specifically 0.7,
0.8, and 0.9 (which is the standard value we have used for all
other simulations of this study).

Fig. 3. Comparison of clustering results, on the considered algorithms, for different degrees of supervision on (A) AD and (B) RD1 datasets.
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In Fig. 4 we can see that, when we keep a low value for nF we
have better results of NMI, in almost all of the range of provided
supervision and especially for small percentages. Hence, we could
conclude that, in cases where we can be certain of the accuracy of
the constraints supplied to SSFCA, setting nF to a low value could
further improve the clustering results in comparison to larger
values.

At this point we should note that in all of the simulations we
performed the number of Must-link constraints that were
retained was smaller than the number of Dont-link. This observa-
tion implies that it could be more effective to provide a larger
number of Must-link constraints, since in certain cases they are
more difficult to be retained in comparison to Dont-link.

Based on this conclusion and the fact that in many applications
(like the one considered in this study) it can be easier to assemble
Must-link than Dont-link constraints, we have performed a final
simulation where we employed only Must-link constraints. In this

final experimental setup we checked the apodosis of SSFCA on
dataset RD2 for which we had no information regarding neither
the number of clusters nor the labelling of the patterns.

To select constraints on RD2, we applied a framework, based
on a measure concerning gene pairs, utilizing both gene expres-
sion data and GO as a source of prior biological knowledge. GO
has a directed acyclic graph structure (DAG) and describes genes
in tree orthogonal taxonomies: biological process (BP), molecular
function, and cellular component. In this study we have used BP
information. The leaves of DAG are genes and the internal nodes
are terms (annotations). The closer a node is to the root the more
general is its biological class. The number of genes associated
with a GO annotation term indicates how specific that term is,
therefore based on this criterion we could discriminate between
general and more specific terms. Genes sharing a more specific
term are more likely to interact than genes that share a general
term. While, there are many GO measures [28] in the literature

Table 1
This table, reports detailed clustering results on sensitivity (Sens), specificity (Spes) and adjusted rand index (ARI) obtained by different algorithms, on AD and RD1
datasets. Concerning the proposed SSFCA, we provide results throughout all range of supervision, while for CPK only the best values that were acquired with the maximum
percentage.

RD1/AD

Algorithms Constraints percent ARI Sens Spes

SSFCA 0 0.354/0.430 0.441/0.489 0.890/0.943
3 0.505/0.519 0.610/0.654 0.885/0.931
6 0.591/0.508 0.669/0.574 0.884/0.948
9 0.595/0.562 0.673/0.633 0.892/0.951
12 0.601/0.636 0.690/0.728 0.902/0.953
15 0.603/0.705 0.731/0.751 0.910/0.968
18 0.635/0.739 0.792/0.833 0.911/0.963
21 0.679/0.833 0.811/0.852 0.913/0.983
24 0.658/0.929 0.845/0.937 0.925/0.993
27 0.725/0.870 0.876/0.975 0.931/0.975
30 0.738/0.936 0.895/0.984 0.945/0.985

CPK 30 0.517/0.580 0.619/0.641 0.894/0.955
K-means – 0.362/0.460 0.466/0.563 0.879/0.934
FCM – 0.354/0.430 0.441/0.489 0.890/0.943

Fig. 4. Clustering results for different values of parameter nF under the same sets of constraints for RD1 dataset.
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that provide a quantitative degree of similarity between two
specific genes in respect to their GO terms, Resnik’s [29], is one of
the most widely used.

We will now define a simple measure integrating similarity of
expression profile patterns and gene annotations that will be used
to guide the process of constraints selection

Gij ¼
d2

ij=sij
PNG

t ¼ 1

PNG

k ¼ 1 d2
tk=stk

, 8jA 1. . .N½ & ð22Þ

where i and j correspond to a certain pair of genes, dij is the
Euclidean distance between the expression profiles of i and j, sij is
Resnik’s similarity measure, and NG is the number of pairs for
which we have GO information. During the preprocessing step we
calculated sij for all possible gene pairs and the pairs that had a
zero value (i.e. no GO correlation), were excluded from further
processing. While sij ranges from 0 to a maximum value, having
0 as worst case, the opposite occurs for Euclidean distance. Hence
we are using the inverse of Resnik’s measure to weight the
similarity of profiles for every pair of genes. We finally normalize
the score of a certain pair by the total sum of all pairs in a dataset.
The range of the proposed measure ranges from 0 to a maximum
value, having 0 as the best case.

In order to extract the necessary constraints from a given
dataset, we adapt a methodology where every one of the genes
present, is cross-checked against all others (provided there is
corresponding GO information). Each one of these pairs is given a
similarity degree based on Eq. (22). After the process is concluded
for all genes, we sort the values of the corresponding pairs and
determine the mean values of these scores. The final step of the
proposed methodology is to randomly select a specific fraction of
the pairs that have achieved a minimum score (smaller than the
mean value) and use them to form the Must-link constraints.

Running the algorithm with values of Coves ranging from 10 to
40 always the algorithm provided 6, as the best number of
clusters. This result can be also confirmed by other similar studies
on the same dataset [24].

We have checked the apodosis of the algorithms, based on SI,
which is a metric used to check the results of a certain data
partitioning and as we have already mentioned ranges from $1
to 1. The larger its value the better is the clustering.

In contrast to datasets AD and RD1, in the case of RD2, FCM
algorithm presented worst performance than k-means and hence
SSFCA originated its operation from the same value. However,
again in this dataset, SSFCA managed to improve its performance
from the initial stages of supervised information, as we can depict
in Fig. 5. After around 10% and till the maximum amount of
provided supervision, it consistently outperformed both the
unsupervised and semi-supervised methods we have considered.
Specifically for the maximum percent of supervision, achieved a
value SI of 0.75 when the other semi-supervised method for the
same amount of constraints had a value 0.59 and the best of the
unsupervised algorithms (k-means in this dataset) had a value
of 0.52.

The last performed simulation on dataset RD2 not only
emphasize on the efficiency of the of the proposed SSFCA algo-
rithm that was also evident in datasets AD and RD1 (Fig. 1A and
B), but also on the advantages originating from using an external
source of information integrated with the internal characteristics
of the data on which clustering is applied (22).

4. Conclusions

A novel algorithm for semi-supervised clustering named SSFCA
was presented in this paper. The proposed algorithm incorporates
supervised information using pair-wise constraints indicating
whether a pair of patterns should be part of the same cluster or
not. A key parameter in the algorithm controls the degree up to
which the constraints will influence the overall clustering pro-
cess. While the user could have control over this parameter, in the
standard operation of SSFCA is automatically handled. We have
also presented an extension of the algorithm by integrating in the

Fig. 5. Comparison of clustering results, on the considered algorithms, for different degrees of supervision on RD2 dataset.
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main objective function of SSFCA, a regularization term allowing
this way the automatic determination of the number of clusters.

While the algorithm can have a broad range of applications in
various scientific fields, in this study we have applied SSFCA to
the intrinsic problem of gene expression profiles clustering.
Grouping genes based on similarities of expression levels, can
be a valuable process since it can determine the cooperation of
certain genes under specific experimental set-ups or provide
insights for the functioning of unknown genes. Additionally there
is an extremely large amount of information concerning genes
(e.g. GO, protein–DNA interactions, etc.) that could contribute
greatly to the selection of constraints. Indeed the specific applica-
tion allowed us to study the advantages originating from the
integration of external sources of information in the clustering
process. Specifically, we have used GO data as primary source of
supervised information enriched with internal characteristics of
the dataset to be clustered (i.e. pattern similarities). The improved
results we acquired from this process suggest that SSFCA could be
applied to other sources of biological information like protein–
protein interactions as possible sources of supervised
information.

Finally an interesting future extension of SSFCA, would be to
reformulate its basic objective function, so that it could be
integrated in the operation of an evolutionary algorithm in the
form of a fitness function. Similar approaches have been used for
standard FCM [30]. Under this framework SSFCA could take
advantage of the ability of EAs to avoid local minima entrapment,
which can be a problem for calculus based algorithms. An
approach such as this could further elucidate the performance
of SSFCA which as we have seen was considerably better than
other well established semi-supervised and standard clustering
techniques, both crisp as well as fuzzy.
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Appendix

In the following sections we will describe the derivation of the
update equations for the objective functions of SSFCA.

Part I: semi-supervised fuzzy clustering algorithm

To minimize the objective function of SSFCA with respect to U,
we apply the method of Lagrange multipliers to (3)

JðU,V ;X,PÞ ¼
XC

i ¼ 1

XN

j ¼ 1

nuij$ð1$nÞbij

# $m
d2

ij$
XN

j ¼ 1

lj

XC

i ¼ 1

uij$1

" #
ð23Þ

Fixing the centroids

@J
@ust
¼ nm nust$ð1$nÞbst

' (m$1
d2

st$lt ð24Þ

Setting Eq. (24) equal to zero and solving for ust we get

ust ¼
1
n

lt

nmd2
st

! "1=ðm$1Þ

þ
1$n

n
bst ð25Þ

Using Eq. (25) and the constraints in Eq. (5), we obtain

XC

k ¼ 1

1
n

lt

nmd2
kt

 !1=ðm$1Þ

þ
1$n

n
bkt

2

4

3

5¼ 1 ð26Þ

simplifying Eq. (26) we get

1
n

lt

nm

! "1=ðm$1ÞXC

k ¼ 1

1

d2
kt

 !1=ðm$1Þ

¼ 1$
1$n

n

XC

k ¼ 1

bkt ð27Þ

solving Eq. (27) in respect to lt we have

l1=ðm$1Þ
t ¼

1$ 1$n
n

PC
k ¼ 1 bkt

1
n

1
nm

' (1=ðm$1ÞPC
k ¼ 1

1
d2

kt

! "1=ðm$1Þ ð28Þ

Substituting Eq. (28) to Eq. (25) and rearranging we get

ust ¼
1

d2
st

# $1=ðm$1Þ

PC
k ¼ 1

1
d2

kt

! "1=ðm$1Þ þ
1$n

n
bst$

1$n
n

1

d2
st

! "1=ðm$1Þ PC
k ¼ 1 bkt

PC
k ¼ 1

1
d2

kt

! "1=ðm$1Þ

ð29Þ

From Eq. (29) we derive the update equation (6) as described
in Section 2.1.

Finally by differentiating Eq. (3) in respect to vi and setting
equal to zero we conclude to the updating equation regarding the
centroids of the clusters as depicted in Eq. (12).

Part II: extension of semi-supervised fuzzy clustering algorithm

For the derivation of the update equations of J0 (13) we will
apply again the method of Lagrange multipliers, thus

JA ¼
XC

i ¼ 1

XN

j ¼ 1

a2
ijd

2
ij$g

XC

i ¼ 1

XN

j ¼ 1

nuijþð1$nÞbij

# $
2

4

3

5
2

$
XN

j ¼ 1

lj

XC

i ¼ 1

uij$1

" #

ð30Þ

fixing matrix V of the centroid vectors, differentiating on ust and
setting equal to zero we get

@JA

@ust
¼ 2nastd

2
st$2gnKs$lt ¼ 0 ð31Þ

from the above, we get for ast

ast ¼
ltþ2gnKs

2nd2
st

ð32Þ

substituting ast with Eq. (32), and replacing to Eq. (31) we have
for ust

ust ¼
ltþ2gnKs

2n2d2
st

þ
1$n

n
bst ð33Þ

Using the constraints of (5) and (33) we get

XC

k ¼ 1

ukt ¼ 1)
XC

k ¼ 1
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2n2d2
kt

þ
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 !
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after rearranging and solving in respect to lt we get
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Replacing Eq. (35) to Eq. (33) and rearranging we get for ust
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from where we deduce Eq. (16).
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