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Abstract The paper tries to give a new scheme for
image encryption, which innovatively introduced the
idea of Langton’s Ant cellular automaton to scramble
the image. We virtualize a chessboard with the size of
the image, and let the ant crawls on it by following
the rules which Langton gives and steps generated by
intertwining logistic map, then to determine the posi-
tion of the plain image’s pixels in the scrambling image
according to the position which the ant stay each time.
Lastly, the PWLCM chaos map has been used to diffuse
the image. Experimental results and security analysis
show that our scheme is secure and can be used in image
encryption and transmission.

Keywords Image encryption · Langton’s Ant ·
Cellular automaton · Intertwining logistic map ·
PWLCM

1 Introduction

There are many ways to encrypt images, generally
three types of forms are more obviously: 1⃝ Convert-
ing an image into one general stream of characters and
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using the traditional encryption methods, such as DES,
AES [1], etc. But considering the large amount data of
the image, such algorithms usually improve and opti-
mize accordingly. 2⃝ The image has been regarded as
a two-dimensional matrix, which a series of mathe-
matical transformations will be carried out on. This is
the main idea for encryption currently. Of course, the
specific forms vary widely, and some algorithm will
put the two-dimensional image into a one-dimensional
sequence. But overall, most of them abandoned the tra-
ditional method of encryption, fully using the charac-
teristics of the image, which brought a great increase
in performance. 3⃝ The combination of encryption and
compression [2–5], in fact, no matter the compression
is either before or after the encryption, the amount of
resulting cipher text generally been cut ultimately, so
just need to transfer less data in the transmission.

Encryption based on chaos [6–10,20–22] is one
of the typical methods. Usually, these algorithms are
designed to combine chaos with other ideas, its main
advantage is that you can take advantage of the superior
characteristics of chaos to meet the needs of encryption.

However, these algorithms usually have some prob-
lems: 1⃝ Chaos itself is flawed. As Arnold map’s prob-
lems are often criticized, the number of its iterations
is limited, which is <1,000 times. 2⃝ Some algorithms
have poor versatility, and they tend to have stringent
requirements about images. 3⃝ The design of arith-
metic logic is defective and cannot deal with common
analysis attacks. Due to the presence of defects, many
algorithms have been cracked [11–16].
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Fig. 1 Demonstration of the rules. a Start state of rule 1, b end state of rule 1, c start state of rule 2, d end state of rule 2

This paper try to using the idea of the Langton’s Ant
cellular automaton to make a new scheme for image
encryption. We give the algorithm designed by apply-
ing it to scramble, the article uses two kinds of chaotic
maps to confuse and diffuse the image.

The paper is organized as follows: the descriptions
about Langton’s Ant cellular automaton and chaos
used in this paper is in Sect. 2. Section 3 gives a
detailed description of our algorithm, and Sect. 4 is the
experiment, the security analysis has been discussed in
Sect. 5, and the conclusion in final.

2 Preparation

2.1 Cellular automaton

Cellular automaton originally proposed by mathemati-
cian Stanislaw M. Ulam (1909–1984) and John von
Neumann (1903–1957) in the 1940s [17]. It is a discrete
dynamical system in terms of morphological manifes-
tations. It is comprised of grids which followed some
special rules, each grid can be seen as a cell, and each
cell has some states, but only can have one state in a
moment. Along with changing over time (we called
“iteration” process), each cell in the grids change its
state according to the states of peripheral cells by fol-
lowing the same rules, in other words, one cell’s state
is determined by the states of cells surrounded in the
last moment. In view of artificial life, cellular automa-
ton can be seen as a world which so many single-celled
organisms’ lives, after we set the initial state of the
world, they will start the evolution by following the
same rules.

A cellular automaton consists of several parts: deter-
mine the dimensions of the cell‘s living space, define

the states the cells may have, define the rules how the
cell change its state, set the initial state of each cells.
Cellular automaton, in terms of living space, can be
one dimensional, two dimensional, three dimensional,
or higher dimensions.

2.2 Langton’s Ant cellular automaton

Langton’s Ant cellular automaton is an example of cel-
lular automata. It is proposed by Christopher Langton
[18]. Its main principle is as follows: The girds in the
plane (we called “chessboard”) are filled with black or
white.

There is one ant in one of the girds. Its head toward
one of the four directions (up, down. left, right). The
ant crawls by following two rules: 1⃝ If the ant is in the
black gird, it should turn right by 90◦. Then change the
black grid to white, and move forward by one step. 2⃝
If the ant is in the white gird, it should turn left by 90◦.
Then change the white gird to black, and move forward
by one step. Figure 1 shows the demonstration of the
rules.

2.3 Chaotic system

2.3.1 The intertwining logistic map

The intertwining logistic map can be described as
below:

⎧
⎪⎨

⎪⎩

xn+1 = [µ × k1 × yn × (1 − xn) + zn] mod 1

yn+1 =
[
µ × k2 × yn + zn × 1

/
1 + x2

n+1

]
mod 1

zn+1 =
[
µ × (xn+1 + yn+1 + k3) × sin(zn)

]
mod 1

.

(1)
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where 0 < µ ≤ 3.999, |k1| > 33.5, |k2| >

37.9, |k3| > 35.7. The intertwining logistic map is
much more chaotic than the logistic map; moreover, it
has no blank windows and much even distribution [19].

2.3.2 The PWLCM map

Piecewise linear chaotic map:

xi = F(xi−1, η)=

⎧
⎪⎨

⎪⎩

xi−1
η , 0 < xi−1 < η

xi−1−η
2−η , η ≤ xi−1 < 0.5

F (1 − xi−1, η) , 0.5≤ xi−1 <1
.

(2)

where xi ∈ (0, 1), η ∈ (0, 0.5). The PWLCM map is
evenly distributed. It also has commendable ergodicity.

3 Algorithm

For M × N image P , we use the Langton’s Ant cellular
automaton and intertwining logistic map to scramble
the image, and then diffuse it with PWLCM map.

Step 1 In order to resist attacks, we need to introduce
the plaintext sensitivity. On the other hand, the chaos
is sensitive to the initial value. So we can expressly use
the plaintext to modify the initial value of the chaos.

x ′
0 = x0 −

(
δ/1014 −

⌊
δ/1014

⌋)/
102. (3)

where δ denotes the sum of all the pixels of the plain
image, x0 is the initial value given as a key, x ′

0 is the
modified result.

Step 2 The intertwining chaotic system has been
used to generate the chaotic sequences, we can get
three sequences (u1u2 . . . uM N ), (v1v2 . . . vM N ) and
(w1w2 . . . wM N ) by using the chaotic system (1) and
the initial value x ′

0.
Step 3 Preparatory work, the initial setup:
Step 3.1 Convert the original image P into a one-

dimensional sequence p1 p2 . . . pM N . k denotes the
pointer of pi , k = 1.

Step 3.2 Initialize the scrambling image D, for i =
1, 2, . . . , M, j = 1, 2, . . . , N , D(i, j) = −1. −1
means that there is no scrambled result stored here.

Step 3.3 Initialize the “chessboard” Cb which
the Langton’s Ant will crawl. We used two chaotic
sequences (u1u2 . . . uM N ), (v1v2 . . . vM N ) generated

by step 2 and reshape them to two-dimensional seq-
uences (ui j and vi j ) where i = 1, 2, . . . , M, j =
1, 2, . . . , N , if u(i, j) > v(i, j), then Cb(i, j) = 1.
Otherwise Cb(i, j) = 0. Here, 0 denotes the black box
and 1 for the white.

Step 3.4 Initialize the starting coordinates istart ,

jstart and direction d for the Langton’s Ant. d is in
the range of (0, 1, 2, 3), 0 for the upward direction, 1
for the right, 2 for the down, 3 for the left.

Step 3.5 Generate the random collection s1s2 . . .

sM N of variable steps with the chaotic sequence
w1w2 . . . wM N and Eq. (4).

si =
(
wi × 1014

)
mod 4, 3 ≥ si ≥ 0. (4)

Step 4 The Langton’s Ant crawls from the starting
coordinates i = istart , j = jstart with the direction d
for M × N steps.

(1) If Cb(i, j) = 1, then Cb(i, j) = 0. Otherwise
Cb(i, j) = 1.

(2) If D(i, j) = −1, then D(i, j) = pk, k = k + 1.
(3) The coordinates i, j and the direction d should be

modified to ensure that the ant is in the range of
the Cb according to the turning and moving rules
(showed as in Table 1).

Step 5 We put the remaining pixels of the original
image into the scrambling image.

Step 6 We use one piecewise linear chaotic map to
diffuse.

⎧
⎨

⎩

bi = F(bi−1, η)

di = (bi × 1014)mod 256
ci = pi ⊕ di ⊕ ci−1

. (5)

where i ∈ (1, 2, . . . , M N ), c0 is a given value pro-
vided as a key. F means PWLCM map, b0 is the
PWLCM map’s initial value (given in advance and
b0 > 0.1) and η is the parameter. pi is the i-th pixel of
the permuted image with the scanning order from left
to right and up to down, ci is the encrypted value of pi .

4 Experiment

This paper conducted several experiments on multi-
ple images, the images we have used are Lena. bmp,
boat. bmp and peppers. bmp of size 512 × 512, all the
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Table 1 The turning and
moving rules

d i j

Cb(i, j) = 0 d = 0 1 i = mod(i + 1 + sr , M) j

d = 1 2 i j = mod( j + 1 + sr , N )

d = 2 3 i = mod(i − 1 + sr , M) j

d = 3 0 i j = mod( j − 1 + sr , N )

Cb(i, j) = 1 d = 0 3 i = mod(i − 1 + sr , M) j

d = 1 0 i j = mod( j − 1 + sr , N )

d = 2 1 i = mod(i + 1 + sr , M) j

d = 3 2 i j = mod( j + 1 + sr , N )

experiments run on Matlab 2013a (64 bit), the configu-
ration of our experimental machine are Microsoft Win-
dows 7 operation system, 2.2 GHZ CPU, 4 GB memory.
Table 2 shows the keys we adopted. Figures 2a, 3a and
4a show three plain images, Figs. 2b, 3b and 4b show
the scrambled result, Figs. 2c, 3c and 4c are the cipher
images.

5 Security analysis

5.1 Key space analysis

To make the key space large enough is necessary and
important for an encryption algorithm. Its main sig-
nificance is to make the brute-force attacks computa-
tionally infeasible, which has been a basic common
sense. This paper utilize two chaotic systems, espe-
cially the intertwining logistic map, which have mul-
tiple initial values and parameters. All of that can
make key space large enough. The keys we employed
are showed in Table 2: the initial values and parame-
ters x0, y0, z0, µ, k1, k2, k3 of the intertwining logistic

Table 2 The key used in our scheme

Key name Value Meaning

x0 0.36 The initial value of intertwining
logistic map

y0 0.25

z0 0.78

k1 35.5 The parameter of intertwining
logistic map

k2 38.2

k3 36

µ 1.5

b0 0.2 The initial value of PWLCM map

η 0.3 The parameter of PWLCM

c0 100 A given value to diffuse

map, b0, η of PWLCM map. The ciphered image can
be decrypted unless we know x0, y0, z0, µ within error
10−16 and k1, k2, k3 within error 10−15, b0 within error
10−16, η within error 10−16, the key space is larger
than 10141. So it is obvious that the key space is large
enough to resist the brute-force attack.

Fig. 2 Experimental result
of lena.bmp. a Original
image, b scrambled image,
c encrypted image
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Fig. 3 Experimental result
of boat.bmp. a Original
image, b scrambled image,
c encrypted image

Fig. 4 Experimental result
of peppers.bmp. a Original
image, b scrambled image,
c encrypted image

5.2 Statistical analysis

Statistical analysis attack is a traditional measure to
crack, which is useful for some classical encryption.
A good encryption algorithm should make the cipher
image confusing enough so that an attacker cannot get
any useful information from a statistical point of view.
This requires the algorithm has good randomness, and
chaos can be a nice choice to meet that. Here, we elab-
orate statistical analysis from three indicators: the his-
tograms, correlations of two adjacent pixels and the
information entropy.

5.2.1 Histograms of corresponding images

We can obtain a visual impression of statistics from
histograms. Generally, the histogram of the plain
image will be clear statistically significant, which
exposed some characteristic features of the image.
After encrypted, these features should not be obtained.
Cipher text should show non-obvious features and be
almost statistically equal for the 256 gray-scale image.
Figure 5 shows the histograms of the original and
encrypted image of lena.bmp. We can see that the his-
togram has been much uniform after encrypted.

5.2.2 Correlations of two adjacent pixels

There is an expressly strong correlation between the
pixels of the plain image, which is a reflection of its
features. So in the cipher text, these correlations should
be weakened. The paper randomly chose 1,000 pairs
of pixels separately in horizontal, vertical and diagonal
direction from the image lena.bmp and calculate the
coefficients as follows:

rxy = cov(x, y)√
D(x)

√
D(y)

, (6)

where

cov(x, y) = 1
N

N∑

i=1

(xi − E(x))(yi − E(y)),

D(x)= 1
N

N∑

i+1

(xi − E(x))2, E(x)= 1
N

N∑

i=1

xi .

where, x and y stand for the gray-scale values of two
adjacent pixels;

Table 3 shows the correlation coefficients of two
adjacent pixels in three directions, the coefficients of
the original image is almost to 1, after encrypted, they
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Fig. 5 Histograms analysis. a Histogram of original image, b histogram of ciphered image

Table 3 The correlation coefficients of two adjacent pixels in
three directions

Directions Original image Cipher image

Horizontal 0.973928780957292 0.001270468595904

Vertical 0.984469820084225 0.001694253624902

Diagonal 0.960657093678514 −0.001541295546719

have been cut down to nearly 0. Figure 6 gives the
correlation of two horizontally adjacent pixels. So this
paper has remarkable achievements.

5.2.3 Information entropy

Information entropy is a very important concept in
information theory, it can describe the degree of dis-
order of a system. As we have said in front, the cipher
text should be confusing enough to resist the statisti-
cal analysis attack. Here, we can use the information
entropy to calculate, the more the entropy is to 8, the
more confusing the cipher text is.

H(s) =
2L−1∑

i=0

p(si ) log2
1

p(si )
, (7)

Fig. 6 Correlation of two horizontally adjacent pixels. a Correlation of original image, b correlation of ciphered image
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Table 4 Information
entropies

Test image Original image Cipher image

Lena.bmp (512 × 512) 7.445567570340059 7.999317955870737

Boat.bmp (512 × 512) 7.191370218069238 7.999296628450773

Peppers.bmp (512 × 512) 7.571477564161731 7.999297667485719

where p(si ) denotes the probability of symbol si .
Table 4 gives the information entropies of three

images. After encrypted, we can see that the infor-
mation entropies have been enlarged and almost to 8,
which means the cipher text is confusing enough.

5.3 Sensitivity analysis

In order to find clues to crack, attackers often observe
changes in the cipher text by making small changes to
the keys or plaintext. That requires our algorithm must
be sensitive to the key and the plaintext. When tiny
change of the plaintext or key occur, the cipher text
should be able to vary greatly, so do not let the attacker
succeeded.

5.3.1 Key sensitivity

We decrypt the ciphered image Fig. 2c using b0 =
0.25 + 10−16 with other keys the same, Fig. 7b shows
the image which has been decrypted by the wrong key,
while Fig. 7a gives the right result.

5.3.2 Plaintext sensitivity

In order to cope with the differential attack, when a
slight change of plaintext happen, cipher text should
change greatly, so that the attacker cannot obtain
any meaningful association between the plaintext and
cipher text. Here are the formulas to calculate NPCR

Fig. 7 Sensitivity analysis. a Decrypted with correct key,
b decrypted with wrong key

(number of pixels change rate) and UACI (unified aver-
age changing intensity) according to Eqs. (8) and (9).

NPCR =
∑

i, j D(i, j)

W × H
× 100, (8)

UACI = 1
W × H

⎡

⎣
∑

i, j

|c1(i, j) − c2(i, j)|
255

⎤

⎦ × 100,

(9)

where c1 and c2 are two images with the same size W ×
H . If c1(i, j) ̸= c2(i, j), then D(i, j) = 1, otherwise,
D(i, j) = 0.

Table 5 gives the mean NPCR and UACI of ciphered
images when there is one bit different between the plain
images. After encrypted, almost all the pixels of the test
images have been changed. It is clear that the disparity
between the corresponding pixels became larger. So the
algorithm is sensitive to the plaintext.

Table 5 The mean NPCR
and UACI of ciphered
images with one bit different
between the plain images

Test image NPCR (%) UACI (%)

Lena.bmp (512 × 512) 99.6307373046875 33.5663978726360

Boat.bmp (512 × 512) 99.6128082275391 33.4661745557705

Peppers.bmp(512 × 512) 99.6196746826172 33.4530415254591
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6 Conclusion

This paper proposes an encryption algorithm using
Langton’s Ant cellular automaton to scramble and
chaos to diffuse. The main idea is to combine the two-
dimensional structural characteristics of the image with
the “chessboard” Langton’s Ant crawls on. According
to the result of each step of the automaton, we can
get the scrambled image gradually. In order to increase
the randomness, the paper made change to the cellular
automaton by using the chaos map to generate steps
with random length. Experimental results and analy-
sis show that the tested indicators of our algorithm
are good, it is able to resist common attacks. In prac-
tice, our algorithm does not have rigid requirements for
image itself and no overly complex logic design and is
easy to understand and use. In conclusion, the proposed
scheme is secure and practical.
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