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Distributed Information Theoretic Clustering

Pengcheng Shen and Chunguang Li

Abstract—Distributed data collection and analysis over net-
works are ubiquitous, especially over the wireless sensor networks
(WSN5s). Distributed clustering is one of the most important topics
in distributed data analysis. It is desired to explore the hidden
structure of the data collected/stored in geographically distributed
nodes. In recent years, several distributed data clustering tech-
niques have been developed based on the K-means algorithm or
the Gaussian mixture model. In these methods, data structures
are captured by measures only based on the first and the second
order statistics. When the structure of cluster data is complicated,
these statistics are insufficient and may lead to unsatisfactory
clustering results. In such a case, using information theoretic
measures can achieve better clustering performance since they
take the whole distribution of cluster data into account. In this
work, we incorporate an information theoretic measure into the
cost function of the distributed clustering, to present a linear and
a kernel distributed clustering algorithms. In the algorithms, each
node solves a local clustering problem through diffusion coop-
eration with its neighboring nodes. In order to preserve privacy
and save communication costs, in the cooperation, nodes merely
exchange a few parameters instead of original data with their
one-hop neighbors. Simulation results show that the proposed dis-
tributed algorithms can achieve almost as good clustering results
as the corresponding centralized information theoretic clustering
algorithms on both synthetic and real data.

Index Terms—Diffusion cooperation, discriminative clustering,
distributed clustering, information theory, mutual information.

I. INTRODUCTION

ATA clustering is to explore the hidden structure of

data and group data items into a few clusters in an
unsupervised way. Given the whole data, many (centralized)
clustering algorithms have been proposed to solve the unsuper-
vised learning problem [1]-[6]. However, in many cases, large
amounts of data are not centrally collected/stored in one source
but dispersedly collected/stored in geographically distributed
nodes over networks. The widely used wireless sensor network
(WSN) is a typical example. Due to the limited energy, com-
munication, computation and storage resources, centralizing
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the whole distributed data to one fusion node to perform cen-
tralized clustering may be impractical. Thus, there is a great
demand for distributed data clustering algorithms in which the
global clustering problem can be solved at each individual node
based on local data and limited information exchanges among
nodes. In addition, compared with the centralized clustering,
distributed clustering is more flexible and robust to node and/or
link failure.

In recent years, several distributed data clustering algorithms
have been proposed [7]-[17]. Most of the existing algorithms
are based on the K-means method or the Gaussian mixture
model (GMM). In K-means based clustering algorithms, the
cost functions usually measure the sum of distances (squared
differences) between data items and estimated centroids of
clusters [7], [9], [17]. In GMM based clustering algorithms, the
distribution of an individual cluster is assumed to be Gaussian,
which is fully specified by its mean/centroid and variance [12],
[13]. In these kinds of methods, data structures are captured by
measures only based on the first and the second order statistics.
However, real data structures are usually complicated and not
in accord with assumed models. In such cases, these clustering
algorithms may not achieve satisfactory clustering results.

Information theory provides a general framework to estab-
lish clustering criteria. With information theoretic measures
(e.g. divergence and mutual information), data structure can
be captured beyond the first and the second order statistics,
by taking the whole probability distribution function (pdf) of
cluster data into consideration. Existing researches have val-
idated the performance improvement brought by introducing
information theoretic measures into centralized clustering
[18], [19], [21]-[28]. However, to the best of our knowledge,
information theory based approaches have not been developed
in the field of distributed data clustering yet.

In this work, we present distributed clustering algorithms
based on an information theoretic measure. We incorporate
the maximum mutual information (MMI) criterion into the
cost function in distributed clustering, to present distributed
MMI-based (DMMI) clustering algorithms. In our method,
each node solves a local clustering problem through cooper-
ation with its single-hop neighboring nodes. By the limited
local cooperation/communication, information of local clusters
at individual nodes can be gradually diffused over the whole
network. Thus each node can utilize global information to
help clustering its local data, at a low communication cost.
Besides, in the cooperation, nodes do not transmit original
data but merely exchange a few parameters of clusters. Hence,
clustering task is performed under privacy preservation, which
is important in some practical distributed applications [29],
[30]. We present both linear and kernel DMMI algorithms. The
performance of the proposed algorithms is evaluated on three
different synthetic datasets and one real dataset. Simulation re-
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sults show that the proposed distributed algorithms can achieve
almost as good clustering results as the centralized MMI-based
clustering algorithms.

Compared with our previous work [36], the problem being
considered in this paper is basically different. Specifically, we
deal with an unsupervised learning problem in this paper, while
in the previous publication we consider a supervised learning
problem. For the new kind of distributed learning problem, we
come up with new cost functions and optimization solutions
which can meet specific demands of the distributed clustering,
though some optimization techniques used in the two papers are
similar. The choice of using mutual information (based on dis-
criminative clustering functions) in the distributed cost function
is deliberate (a detailed discussion is provided in Section II).

The rest of this paper is organized as follows. In Section II,
to make the paper self-contained, we briefly introduce some
centralized clustering algorithms based on different informa-
tion theoretic measures. Besides, we interpret the motivation for
choosing the MMI criterion to develop distributed clustering al-
gorithms. Afterwards, in Section III, we present the distributed
MMI-based (DMMI) clustering algorithms in detail, including
types of linear DMMI and kernel DMMI. Results of numerical
simulations are shown in Section IV to illustrate the effective-
ness and advantages of the proposed algorithms. Finally, con-
clusions are drawn in Section V.

Notation: In this paper, we use boldface and normal letters to
denote the vectors and scalars, respectively. We use decorated
letters or the notation {-} to denote a set. Besides, superscript
(+) denotes an estimator, superscript ()7 denotes transposition,
and | - | stands for the set cardinality. Other notations will be
introduced if necessary.

II. PRELIMINARIES AND MOTIVATION

In the existing researches on centralized clustering, there are
various well-performing algorithms based on different informa-
tion theoretic measures [18], [20], [22], [23], [25], [28]. The two
most frequently-used measures in corresponding literatures are
divergence and mutual information [31].

For the divergence-based clustering, there are roughly two
types of algorithms, which are the parametric type and the non-
parametric type, respectively. The Bregman soft clustering al-
gorithm is a representative and typical sample for the former
[20]. In [20], the authors model the data source with a mix-
ture of exponential family distributions (one component for one
cluster), and pose the clustering problem as a parameter estima-
tion problem for the mixture model. They find the correspon-
dence between exponential families and regular Bregman diver-
gences, and thereby bring up a Bregman divergence viewpoint
for learning the maximum likelihood parameters of the mix-
ture model. The algorithm provides a framework for clustering
different datasets by using different Bregman divergences (or
equivalently, parametric models of different exponential distri-
butions). For a given application (dataset), to obtain good clus-
tering performance, it is expected to artificially choose a spe-
cific Bregman divergence (or equivalently, parametric model of
a specific exponential distribution) which matches the genera-
tive model of current data. However, the prior knowledge for
the generative models of real datasets can be lacking, which
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makes it hard to choose an appropriate parametric model. In this
case, using nonparametric models is more flexible and appli-
cable. The algorithm proposed in [18] is a typical sample for the
nonparametric divergence-based clustering. In the literature, the
authors use divergence to measure the ‘distance’ between distri-
butions of data belonging to different clusters. For a clustering
result, large divergence means there are obvious differences or
boundaries between data items belonging to different clusters.
Hence, their goal is to maximize the divergence, by adjusting
the assignment of cluster/class label on each data item. In this
kind of method, calculating divergence relies on unknown con-
ditional pdfs of cluster data, p(data|cluster labcel), which need
to be estimated during clustering. In order to make clustering
adaptable to datasets of different data structures, the authors
choose to directly estimate the conditional pdfs from labeled
data in a nonparametric manner [32], [33], rather than to model
them by predefined parametric models, e.g. exponential family
distributions. Accordingly, the optimization of corresponding
cost functions are directly related to the cluster label of each data
item. Note that, when the algorithms are extended to the dis-
tributed clustering field, this characteristic would lead to request
for transmission of original data (it may be not necessary under
some kind of modification, however, we have not yet found
an efficient modification scheme to avoid the transmission of
data while maintaining good clustering performances). As men-
tioned in the introduction, privacy preservation and communica-
tion resource saving (original data can be large) are usually im-
portant in real distributed applications. So, directly transmitting
original data is not preferred. Fortunately, this does not have to
be the case for mutual information-based distributed clustering,
as explained below.

As for mutual information, in the context of clustering, it
can be used to measure the information shared by data items
and cluster labels. In more detail, it measures the uncertainty
about cluster labels reduced by knowing the data items, or
the uncertainty about data items reduced by knowing the
corresponding cluster labels. Large mutual information means
that the structure information contained in data items is well
preserved by the clustering result. Hence, MMI-based clus-
tering algorithms seek the clustering result that maximizes the
mutual information. Calculation of mutual information can be
performed based on conditional distributions of cluster data,
p(datalcluster label), or based on discriminative clustering
Sunctions, f(cluster label|data) (we show the detail in the
next section) [28]. Using the former type would make the
algorithm face the same problems as the above-mentioned
divergence-based clustering methods, which focus on mod-
eling the distributions of cluster data (so does the GMM-based
clustering algorithms). In comparison, the discriminative clus-
tering functions do not directly model the cluster data, but
only make assumptions on the boundary between clusters. The
distributions of cluster data could be complicated, while the
boundaries among clusters might be a simple curve. Hence,
the discriminative clustering functions can be modeled in a
parametric manner without losing much applicability of algo-
rithms on different datasets. Accordingly, the cost functions
can be optimized by adjusting a few parameters, rather than
the cluster labels of all data items. When decentralizing the
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MMI-based clustering algorithms, this characteristic makes it
possible to avoid transmitting original data, by transmitting
limited number of parameters instead. The number of data
items is usually much larger than the number of parameters
used in a parametric model.

In this paper, we want to develop distributed information the-
oretic clustering algorithms which are applicable to different
datasets while avoiding transmitting original data. As discussed
above, the MMI criterion based on discriminative clustering
functions satisfies the demands, thus it is a good choice for de-
veloping the distributed clustering algorithms. In the next sec-
tion, we describe and formulate the new algorithms in detail.

III. DISTRIBUTED MMI-BASED CLUSTERING

In this part, we first state the distributed clustering problem
in mathematics, and then we formulate the framework for
distributed MMI-based clustering. Afterwards, we present the
derivations of linear DMMI and kernel DMMI algorithms,
respectively.

A. Problem Formulation

We considered a network composed of .J nodes distributed
over a geographic region. Every node j collects/stores a set of
data items denoted by X; = {#,,.,n = 1,...,N;}, where
zjn = (Tjn1,---7jnp)’ € RP are D-dimensional data
items, or named by feature vectors, with components ., 4. For
each node 7, the N; data items, {x; ,,n =1, ..., N;}, are con-
sidered to be samples of a random variable X ; with probability
measure p(x;), and the random variables {X,,5 = 1,....J}
are supposed to follow the same probability measure. In other
words, the N; data items, {#;,,n = 1,...,N;}, can also
be viewed as part of samples of a global random variable X
with probability measure p(z). The total number of data sam-
ples for X over the whole network is N = Z N;. Without
loss of generality, we model the network by a connected graph
G(TJ,E), where J denotes the node set and £ denotes the edge
set [7]. If two nodes are connected by an edge, then they are
the one-hop-communication neighbor for each other. All the
one-hop neighbors of node j and itself constitute its neighbor
set B;. Node j is supposed to cluster its local data into M dif-
ferent classes based on cooperation with nodes belonging to
B;. In other words, each data item x; ,, stored in node j needs
to be attached with a class label. The class label K is also
considered to be a random variable with probability measure
plk), ke {1,...,M}.

Note that though direct cooperation is limited within one-hop
neighbors, in a connected graph, information shared by one
node can still be diffused over the whole network in the fol-
lowing steps. Thus each node actually can utilize global infor-
mation in its local clustering, which makes it possible that dis-
tributed clustering algorithms achieve as good clustering results
as the corresponding centralized clustering algorithms.

In centralized MMI-based clustering, with the whole /N data
1tems available, {z;,[ = 1.... , N}/{#;,.i =1,...,J,n =

1,...,N,} (note that {z;} and {x;,} are two dlfferent nota-
tions for one same dataset of /V data items), algorithms seek the
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global clustering solution by maximizing the mutual informa-
tion between data X and class label K, as shown below [28]

max J (W)

12 =Iw(X:K)

=Hw(K) - Hy(K|X), (1)

where Iy (-),Hw(-) respectively denote functions calculating
mutual information and entropy, and WV is the set of parameters
modeling the conditional model p(k|x; W), which is also called
the discriminative clustering model. There are many standard
discriminative functions can be used for p(k|2; W), such as the
logistic regression.

To decentralize the above cost function, we approximate the
empirical estimate of the global mutual information

global X l p(]{,kl?)
IE K) zp p(k|z) lo pwm

N M
p(k|z;)
= ~P(klz) log —
lz:;k::l N ° p(k)
JONyoM
A 1 p(klz; )
= plklz;.)log ———=
/z:; n=1k=1 ZI ]\77 p(k)
J N; M
N; 1 § p(k|z;n)
- N p(k|z; .. ) log ——
;,;ZJNJ NZ§ ’ (%)
J
]\ oca
NZZN%%XM 2

where p(k) = + 2111 p(k|2;) is an empirical distribution of
class labels based on the whole data items. The approximation
in the formula comes up for the reason that when estimating
local mutual information

Irj

Z Zf” k|z;..) log (Hf('?])n)

J n=1k=1

el (X i K)

actually only local data can be used in calculating the empirical
distribution of class labels

pilk Zp klzj.).

I p=1

This approximation is relatively accurate if the whole data items
are randomly (roughly uniformly) distributed in different nodes.
The reason is that under this assumption, the distributions of
local data at individual nodes would be similar to the distribu-
tion of global data, thus the local empirical distributions of class
labels p; (k) would also be similar to the global empirical dis-
tribution p(k). Even if this assumption is invalid in some cases,
though the accuracy of the approximation decreases, the per-
formance of the distributed algorithms based on this approx-
imation would not degrade much, as shown and explained in
Section IV-C. By this approximation, we have transformed the
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global mutual information into a linear combination of local mu-
tual information. In the following, we come up with the cost
function of information theoretic distributed clustering based on
the above results.

B. Algorithms

In order to maintain a “global-like” cost function in dis-
tributed clustering while meeting relevant limitation require-
ments, we propose that each node j seeks the optimal clustering
solution by maximizing a linear combination of local mutual
information within its neighbor set 3;, as below

max S W) = 3 e i (X K), 3)

where {¢; ;} are some non-negative combination coefficients
satisfying the condition 3.5 c1; = 1, ¢1; = 0ifl ¢ B;.
Compared with (2), here the nodes being considered are re-
stricted within the neighbor set, to guarantee a local coopera-
tion. Accordingly, the combination coefficients {¢; ;} are set as

ﬁ . For the sake of simplicity, we replace the nota-
eB;

tion 717" (X ;; K) by I;(X j; K ) in the following derivation, in
the case of no confusion.

Having determined the cost function for each node, we fur-
ther consider how to solve the optimization problem without
transmitting original data. Usually, the cost function (3) can be
maximized by a certain iterative scheme

Wi =W+ AW, 4)

where the subscript ¢« denotes the iteration step, set ¥V, ; de-
notes the guess of model parameters for node j at step ¢, and
AW, ; denotes the increment of parameters for the 7th adjust-
ment (here, operations on a set are performed by operating on
each element/parameter in the set). There are many gradient-
based methods to calculate the increment AW, ;. For example,
by using the steepest-ascent method, we have

aj[(X[;K)

AWii= 1D g Iwi s ®)

1€B;

where 4 is a learning step-size. Note that in the above calcula-
tion of the gradient at node j, we have to use the original data
stored in all neighboring nodes, which is infeasible under the re-
striction on data transmission. We solve this problem by intro-
ducing an assumption which has been widely used in the field
of distributed parameter estimation [35]-[39]. That is, the local
parameter estimate at node 7 is assumed to be a linear combina-
tion of these estimates:

Wii=Y_ a;Vi, (6)

1eB;

where V; ; denotes the intermediate estimates of model param-
eters offered by neighboring node { at th iteration step. These
intermediate estimates are adjusted merely based on local data,

3445

e.g. AV, = “W' Since the linear combination assump-

tion also holds for step « — 1, we have

Wii1= Z criVii-1- 7

leB;

By combining (6) with (7), we have

AWJ’J' = Z Cl_’jAVl_’i. (8)

eB;

This means that the increments also follow the linear combina-
tion assumption. Based on (6) and (8), we can easily decompose
the iterative scheme (4) into a two-step iteration

Vii =Vji-1+ AV (a) ©)
Wii = Yen, ciVii (0)

In the new iterative scheme, nodes first adjust the interme-
diate estimates based on their local data, respectively, then
they transmit the intermediate estimates to their neighboring
nodes, finally each node calculates its local estimates by fusing
all the available intermediate estimates. Thus the optimization
problem is solved by merely transmitting parameters instead
of the original data. Note that the obtained two-step iterative
scheme is similar to the “adaption-then-combination” (ATC)
scheme used in distributed estimation [34], [36]. The corre-
sponding CTA(“combination-then-adaption”)-like scheme can
be obtained in a similar way. Since there is no big difference
between these two kinds of schemes and the ATC scheme
usually leads to slightly better performances than the CTA
scheme, in this paper, we only focus on the ATC-like scheme.

Equation (9) provides a framework for distributed
MMI-based clustering. In the formula, we have not yet re-
ferred to a specific discriminative model p(k|®; W) or a
specific method in calculating the increment AV;;, so the
results obtained are general. In the next two subsections, we
derive the linear DMMI and kernel DMMI algorithms based
on the proposed general framework, using a linear discrimi-
native model and a kernel discriminative model, respectively.
Besides, we use the simple steepest-ascent method to calculate
the increment AV;; in the algorithms. Other gradient-based
optimization methods may also work, but the steepest-ascent
method is efficient and has advantage in computational com-
plexity over other methods, which is an important merit for
nodes with limited resource in computation and storage.

1) Linear DMMI: In this part, we model the discriminative
clustering model p(k|z; W) by the multi-class logistic regres-
sion function

p(k|lz: W) o exp (i + by) (10)
where by, is a scalar and @, € R is a D-dimensional param-
eter vector with component 4. In this model, the parameter
set W = {y,...,@x:b1,...,ba} specifies M hyperplanes.
Each hyperplane is supposed to split one cluster from the others.
So, this model is applicable to linearly separable problems.
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Given the discriminative model, we calculate AV;; =
{A‘Tal,j,is Cey A(aﬂ/[,j,i; Abl’jﬂj, Ceey AbM,j,i} by taking the
derivatives of 1;(X;; K) (¢ and b have the same meaning as
@ and b, respectively. We use tilde upon ¢ and b to distinguish
the intermediate quantities VV from the fused quantities W):

N (X ;; K)
A‘Pk,d,j,i Zuﬁ |Wj,i_1
Z Ljn,dPjkmn
J n=1
p mn p a,n
' ( e £ ZPJ,C,H IJ)_> lw, o1 (11)

j.c

- ai; XK

O

= N E py,k,n

M
Pj.kn Pjen
lOg L ij,c,n 1Og Z— |Wj_i_17 (12)
pJ k —1 Pie

where p; x.n (Pj,c,n) is the shorthand notation for p; (k|z; ,.; V)
(pjlcl®jn; )) and p; . (%) is the shorthand notation for
pile) = V > pilelzj V) (p(k)). These four terms are
functions of the model parameters, and all need to be updated
at each iteration. Since the derivation is similar to that in the
centralized case, we just present the final results here. Readers
can refer to literature [28] for more details. Note that in the for-
mulae above, derivatives are calculated at the last fused esti-
mates W, ; _1 rather than the last intermediate estimates V; ; _1.
The reasons are, in our iterative scheme, the fused estimates
W, ;_1 are the final guess of parameters at the (¢ — 1)th iter-
ation step, thus naturally should be the initial guess for the next
iteration step. Besides, W, ;1 contains more latest clustering
information of neighboring nodes than V; ;_1, which is benefi-
cial to the local clustering at node 3.

In each iteration, calculating the increment A);; needs
O(N,;MD) operations, since there are M (D + 1) parameters
and computing the gradient for each parameter requires one
sum over N; data items (the term ZC 1 Pjen log plj = can
be computed once and reused for parameters of different
classes, as the authors put in [28]). Besides, combining all the
intermediate estimates of neighboring nodes requires O(|5;])
operations. So, for each node, the computational complexity of
each iteration is O(N;M D + |B,|).

As for the communication cost, in each iteration, every node
needs to transmit M (D + 1) parameters to its | B;| neighbors.
Usually, the number of one-hop neighbors is limited in many
real networks and the expected number of classes is small for
general clustering problems, hence, the communication cost is
moderate.
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For clarity, the pseudo-code of this algorithm is summarized
in Algorithm 1, where the maximum number of iterations is
denoted as T'.

Algorithm 1 linear DMMI algorithm

Input: Data items {x, ,, }, desired number of classes M.
Initialization: Initialize V; o and W, ¢ for each node j.
for: =1.7T
forj =1:.J
Compute {A?k,d,;j,i} via (11).
Compute {Aby, ;;} via (12).
Compute V; ; via (9a).
end for
forj =1:J
Broadcast V; ; to all neighbors in 5;.
end for
forj =1:J
Compute W, ; via (9b).
end for
end for

2) Kernel DMMI: Since real datasets are not always lin-
early separable, the linear DMMI algorithm presented above
may not work well when the boundaries between different clus-
ters are complicated. In the centralized MMI-based clustering
algorithms, this problem can be solved by utilizing the kernel
multi-logit regression in forming the discriminative clustering
model [28]:

])(I{/|m« O( €xXp (Z Ckon mn? + bk)

where G(-,-) is a positive kernel function which evaluates the
inner product of two vectors in a high-dimensional space. In this
model, the (global) discriminative clustering surfaces are spec-
ified by all the data items {z,,} with the corresponding weight
coefficients {ay ,, } and bias coefficients {5, }. Note that in the
distributed clustering case, if we use the same model, then the
whole data items need to be available for each node, which is
infeasible without transmission of data. However, if using an
approximate model based on local data for each node j, the
acting objects of weight coefficients {cg ., ;} will vary with
nodes since the available local data items are different for dif-
ferent nodes. Thus we can not directly fuse weight coefficients
offered by different neighboring nodes. This situation conflicts
with the proposed framework of DMMI clustering.

In order to eliminate the conflict, we use a modified kernel
discriminative model

L
p(klz; W) o exp ( Z e n G (X, 2) + bk) ;

h=1
where x;, € R” is a D-dimensional base vector. The set of base
vectors {x; } is constrained to be the same for all nodes. By
this modification, the weight coefficients {5, ;} of different
nodes share the common acting-objects and thus could be di-
rectly fused among neighboring nodes.

Now, the problem left is choosing the base vectors. In litera-
ture [40], the authors suggested several feasible approaches to
design the L base vectors, including the grid-based design and
the random design. In the former approach, grid points in the
value range of data are chosen as the base vectors, while in the
latter approach, base vectors are randomly sampled from the

(13)

(14)
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value range of data. Both of the two methods are suitable for the
kernel DMMI. The appropriate value of L depends on specific
problems. Intuitively, it increases with the complexity of be-
tween-cluster boundaries and the dimension of data. Existing re-
searches on distributed kernel support vector machines (SVM)
show that the value of L does not have to be large for general
classification problems [40]. Besides, our following simulation
results indicate that, for low-dimension clustering problems, a
few number of base vectors is enough to obtain satisfactory clus-
tering results.

After determining the kernel discriminative model, we can
obtain the increment AV;; = {{Adks;i}; {Abr i}} ina
similar way as that in the linear case. Since the formula of cal-
culating {Aby, ; ;} is totally the same as (12), we do not present
it here repeatedly, for the sake of simplicity. The calculation of
{A&k,h,j,i} is given by

R a1;(Xj; K)
Aak’,h,j.i :/l’ﬁ |Wj,i_1
N;
H
= 2 K(Xn: %0 )pjse,n
7 n=1
P M »
7.k, j.c,
log EE =3 " pjemlog 2 ) L (15)
pj,k’ =1 pj;c

Next, we consider the computational complexity and com-
munication cost of the kernel DMMI. Since the kernel model
contains M (L + 1) parameters and each parameter introduces
O(N;) operations in computing its corresponding gradient, the
computational complexity in calculating the increment AV ; is
O(N;M L). Combining with the O(|B;|) operations required in
fusing parameter estimates, the total computational complexity
of one iteration is O(N; M L +|B;|) for each node. Besides, we
can easily find that for each node, the communication cost per
iteration is O({M L|B;|). As we have mentioned previously, the
value of L usually does not have to be large, thus the cost bur-
dens of computation and communication would not be heavy.

For clarity, the pseudo-code of this algorithm is summarized
in Algorithm 2.

Algorithm 2 kernel DMMI algorithm

Input: Data items {#; , }, desired number of classes X .
Initialization: Initialize V; o and W; o for each node j.
for: =1:T
forj =1:.J0
Compute {Ady, 1, ;. } via (15).
Compute {Aby, ; ;} via (12).
Compute V; ; via (9a).
end for
forj =1:.J
Broadcast V; ; to all neighbors in 5;.
end for
for; =1:.J
Compute W, ; via (9b).
end for
end for
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IV. SIMULATION RESULTS

In this section, we conduct a series of simulations to evaluate
the performance of the linear DMMI and the kernel DMMI.
We compare the results of the proposed algorithms with those
of the centralized MMI-based algorithms, the centralized
K-means, and the non-cooperative MMI-based algorithms
(in which nodes do not exchange any information with other
nodes). Note that since the distributions of cluster data in the
considered datasets are all non-Gaussian and the selected al-
gorithms could already provide comprehensive comparison in
evaluating the proposed DMMI algorithms, we do not present
the results of GMM-based clustering algorithms in this paper.
In the simulations, we let all the MMI-based algorithms get
initial guesses for parameters based on K-means method (for
distributed cases, every node performs the K-means initializa-
tion respectively on its own data), according to the procedure
outlined in [28]. For the distributed iterative algorithms, in this
paper, we use a simple distributed termination criterion that all
nodes have the same maximum number of iteration 7". We set
the value of I' empirically. We found in the simulations that
these algorithms can converge within a few hundred iterations.
Besides, if needed, we can use a more complicated distributed
termination criterion similar to that used in [43] to make the
DMMI algorithms more adaptive.

We consider a network composed of 20 nodes, which are ran-
domly distributed in a region. Unless otherwise stated, we let
each node connect to its nearest 4 nodes, and then randomly add
some long-range connections with a probability of 0.1. These
settings are similar to those used in the literature on distributed
information theoretic estimation [36].

The simulations are organized as follows. In Section IV-A
and Section IV-B, we evaluate the performance of the DMMIs
on synthetic data and real data, respectively. In Section IV-C,
we further study the performance of the DMMIs under cases of
unbalanced data distribution.

A. Synthetic Data

In this subsection, we test performances of algorithms on
three different synthetic datasets, including a linearly separable
dataset and two linearly non-separable datasets, by Monte Carlo
simulations. Similar datasets are frequently used to evaluate
the performances of clustering algorithms in corresponding lit-
eratures [18], [19], [41], [42]. For each dataset, we generate
data randomly from respective data models in every simulation.
These data are randomly grouped into 20 subsets with the same
number of data items per subset. These data subsets are then uni-
formly allocated to 20 nodes. The category of data inherently
determined by its generation model is viewed as the ground
truth in evaluating clustering results. For the kernel DMMI,
Gaussian kernel is employed, and base vectors are designed by
the grid-based method. The value of L is set to be 64 for all
datasets. Note that though for the linearly separable dataset, a
smaller L can still lead to good clustering results, using a unified
setting for L avoids the case-by-case considerations. Moreover,
it shows that the DMMI algorithms are robust to the choice of
L, to some extent.

Firstly, we show some qualitative results to illustrate the per-
formance of different algorithms. We present some examples
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Fig. 1. Examples of clustering results for comparing different algorithms on a
linearly separable dataset.
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of clustering results in the simulations for a visual comparison.
Fig. 1 and Fig. 2 show examples of clustering results of different
algorithms on the two-class linearly separable dataset and the
linearly non-separable dataset, respectively. Fig. 3 depicts the
examples of clustering results for a three-class nonlinearly sep-
arable problem.

Secondly, we present some quantitative results to further
compare the performance of different algorithms. For each
dataset, we calculate the average number of misclassification
samples over 50 independent Monte Carlo simulations. In each
simulation, the total numbers of samples used for the three
datasets are 2000, 2000, 3000, respectively, with 1000 samples
per class. The statistical results are listed in the Table I.

Combining the qualitative results with the quantitative
results, we find that the centralized K-means method fails
to cluster all these datasets to desired results, since the data
structures are too complicated to be captured by the first and
the second order statistics. The non-cooperative DMMI algo-
rithms, neither linear nor kernel, also can not well cluster these
datasets, which indicates that there is a need for inter-node
information exchanges when local data lacks the global infor-
mation of data distributions. In comparison, the centralized
linear MMI algorithm and the linear DMMI algorithm with the
diffusion cooperation obtain satisfactory clustering results for
the linearly separable dataset, and the centralized kernel MMI
algorithm and the kernel DMMI algorithm with the diffusion
cooperation achieve good clustering results for all the datasets.
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Fig. 2. Examples of clustering results for comparing different algorithms on
the “double-moon” dataset.

Basically, the diffusion-based linear DMMI and kernel DMMI
show comparable performance to the centralized linear MMI
and kernel MMI algorithms, respectively.

Besides, we study the convergence of the DMMIs under
various network connections. For a network composed of 20
nodes, which are randomly distributed in a region, we adjust the
number of short-range connections (or the number of nearest
neighbors, denoted as N V) and the probability of long-range
connections (denoted as piong). When prongy = 1, the network
is full-connected, and when pjong = 0, NN = 0, the network
is connectionless. Since there are no true-values for the model
parameters, the convergence can not be evaluated by traditional
assessment index like mean square error. Here we use the mean
mutual information over the network as the assessment index.
Its mathematical formula is shown below

1 -
7 (X K.
J

In Fig. 4 and Fig. 5, we present the mean convergence curves
of 50 independent Monte Carlo simulations for the two-circle
dataset and the three-class dataset, respectively. The situation
for the half-moon dataset is similar and is not shown here to save
space. From the figures, we can see that the diffusion DMMIs
can converge within a few hundreds of iterations. Generally, the
diffusion kernel DMMIs converge fast than the diffusion linear
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Fig. 3. Examples of clustering results of different algorithms for a three-class
nonlinearly separable problem.

TABLE 1
THE AVERAGE NUMBER OF MISCLASSIFICATION SAMPLES FOR DIFFERENT
ALGORITHM ON DIFFERENT DATASET

Dateset || the two- the double- | the three-
W circle dataset | moon dataset | class dataset
Centralized K-means 214 291 209
Centralized linear MMI 0 102 159
Centralized kernel MMI 0 0 0
Non-coop. linear DMMI 126 229 517
Non-coop. kernel DMMI 44 203 315
Diffusion linear DMMI 0 100 142
Diffusion kernel DMMI 0 1 0

DMMIs. For the (linearly separable) two-circle dataset, the dif-
fusion linear DMMIs eventually converge to the same level
as that of the diffusion kernel DMMIs, while for the (linearly
non-separable) three-class dataset, the diffusion linear DMMIs
finally converge to a level lower than that of the diffusion kernel
DMMIs. Besides, for the connectionless cases, the non-cooper-
ative DMMISs can only converge to levels much lower than those
of the diffusion DMMIs. These situations are in accord with the
results shown in Table I. In addition, under the current data set-
tings, a few connections, €.g. piong = 0, VN = 2, are capable
of providing individual nodes with enough global data informa-
tion for correct clustering. In fact, part (but enough) of the global
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Fig. 4. The convergence curves of the DMMIs for the two-circle dataset under
different network connections.

data (information) might be even more beneficial to the conver-
gence of individual nodes than the whole global data (informa-
tion). The reason is that with the increase of data amounts, there
might be more data near or across the between-cluster bound-
aries, which would reduce the between-cluster distances and in-
crease the difficulty of correct clustering. So, we see that in the
above simulations, the diffusion DMMIs under sparse network
connections even converge faster than the diffusion DMMIs
under full connections. Similarly, in literatures on distributed
K-means algorithms, they also find that the distributed K-means
algorithms (under sparse network connections) outperform the
centralized K-means algorithm in some cases [7], [9].

B. Real Data

In this subsection, we show the effectiveness of the proposed
DMMI algorithm on a real atmosphere quality evaluation
problem. To get a overall evaluation of the quality, we can
collect air samples distributedly using a WSN. In this example,
the real dataset consists of 2900 measurements of quality of
air samples, 1500 for clean air samples and 1400 for slightly
polluted air samples. Each data item records the concentrations
of three most common pollutants, which are sulfur dioxide,
nitrogen dioxide and PM10. All the data items (after normal-
ization) are depicted in Fig. 6, where the star points (in red)
denote the measurements of polluted air and the circle points
(in blue) denote the measurements of clean air.

To evaluate the performance of the distributed clustering al-
gorithms, we distribute the whole data to 20 nodes in the same
way as that in the above simulations. We use the kernel DMMI
to cluster the atmosphere data, since it was proven to be more
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Fig. 6. A 3-D display of all the atmosphere data.

robust to the variations of inter-class boundaries than the linear
DMMI. We also use the Gaussian kernel and set L to be 64 for
the kernel DMMI. Besides, the performance of the centralized
K-means, the centralized kernel MMI, and the non-cooperative
kernel DMMI is also studied to provide comparisons.

The evaluation is performed by 50 independent Monte Carlo
simulations. For a new simulation, the whole data is re-grouped
into 20 subsets randomly, and then distributed to the 20 nodes.
In Fig. 7, we show the clustering results of one simulation
for different algorithms. Except the qualitative results, we
provide the average number of misclassification samples in the
Table II. From these results, we see that the diffusion kernel
DMMI outperforms the K-means method and the non-coop-
erative kernel DMMI on the atmosphere dataset. The result
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achieved by the diffusion kernel DMMI is similar to that of the
centralized kernel MMI. Moreover, they are both basically in
accordance with the ground truth. This case indicates that the
proposed DMMI algorithm is capable of exploring the overall
data structure in real distributed application.

C. Cases of Unbalanced Data Distribution

In the above subsections, the local data of different nodes
are randomly (roughly uniformly) sampled from the same
global datasets, thus the local empirical distribution of class
labels p; (k) is similar to the overall distribution of class labels
H(k). This similarity makes the approximation performed in (2)
relatively accurate. Besides, the number of data items is equal
for each node. Under these settings, the DMMI algorithms
work well on the testing datasets. However, in some practical
cases, the similarity between p,(%) and p(k) might not be
guaranteed, and the number of data items might be different
for different nodes. In this subsection, we further evaluate the
performance of the algorithms in such two kind of cases. We
perform the evaluation on both the two-circle dataset (linearly
separable) and the three-class dataset (linearly non-separable),
respectively. We take the two datasets as the representatives.
The situations for the other two datasets are similar, so we do
not show their corresponding results.

1) Cases of Dissimilar Class Distributions: In this part, we
consider cases that class distributions are dissimilar among dif-
ferent nodes. In the simulations, we deliberately distribute data
subsets with unbalanced class ratios to different nodes. Specif-
ically, the total number of data items contained in each subset
is the same, while the respective ratios of data belonging to dif-
ferent classes vary obviously and randomly with nodes. The de-
tailed profiles of class ratios used for nodes are shown in Fig. 8
and Fig. 9. Other parameter settings are kept the same as those
adopt in the above simulations.

The evaluation is performed by 50 independent Monte Carlo
simulations. In Table III, we show the average number of mis-
classification samples for the noncooperative DMMIs and the
diffusion DMMIs. Compared with the results shown in Table I,
we can see that, when the distribution of class labels varies ob-
viously with nodes, the average numbers of misclassification
samples for the noncooperative DMMIs increase significantly,
while the average numbers of misclassification samples for the
diffusion DMMIs still keep low. We consider the reason is that
when without cooperation, some nodes have to perform their
local clustering based on heavily unbalanced data, thus the mis-
classification rate increases. In contrast, when with the diffusion
cooperation, the additional information provided by the neigh-
boring nodes can help estimate the parameters of inter-cluster
boundaries, thus the negative influence brought by the unbal-
anced data distribution could be avoided to some extent.

2) Cases of Unequal Data Amounts: In this part, we con-
sider cases that the number of data items are unequal among
different nodes. In the simulations, the same global datasets as
those used in the above subsections are randomly grouped into
20 subsets with unequal data amounts. Then, these data subsets
are uniformly allocated to 20 different nodes. The detailed pro-
files of data amounts at each node are shown in Fig. 10. Other
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Fig. 8. The detailed profile of class ratios of different nodes for the two-circle
dataset.

parameter settings are kept the same as those adopt in the above
simulations.

The evaluation is performed by 50 independent Monte Carlo
simulations. In Table IV, we show the average number of mis-
classification samples for the noncooperative DMMIs and the
diffusion DMMIs. Compared with the results shown in Table I,
we can see that, when the data amounts vary with nodes, the
average numbers of misclassification samples for the DMMIs
do not change much, and the diffusion DMMIs still work well.
In the diffusion DMMIs, since the combination coefficients are

TABLE II
THE AVERAGE NUMBER OF MISCLASSIFICATION SAMPLES FOR DIFFERENT
ALGORITHM ON THE ATMOSPHERE DATA

Algorithm H # misclassification samples
Centralized K-means 85
Centralized kernel MMI 3
Non-coop. kernel DMMI 28
Diffusion kernel DMMI 3

TABLE III
THE AVERAGE NUMBER OF MISCLASSIFICATION SAMPLES FOR DIFFERENT
ALGORITHMS IN THE CASE OF DISSIMILAR CLASS DISTRIBUTION

Dateset
Algorithm

the two- the three-

circle dataset | class dataset

Non-coop. linear DMMI 168 649
Non-coop. kernel DMMI 92 494
Diffusion linear DMMI 178
Diffusion kernel DMMI 2

set according to the data amount at each node, information from
nodes with larger data amounts will have larger contributions in
the diffusion corporations. We think that this scheme naturally
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TABLE IV

THE AVERAGE NUMBER OF MISCLASSIFICATION SAMPLES FOR DIFFERENT
ALGORITHMS IN THE CASE OF UNEQUAL DATA AMOUNTS

Dateset
Algorithm

the two- the three-

circle dataset | class dataset

Non-coop. linear DMMI 157 498
Non-coop. kernel DMMI 45 310
Diffusion linear DMMI 0 153
Diffusion kernel DMMI 0 0

takes the effect of data amounts into consideration and makes
the algorithms robust to the inequality of data amounts.

All the above results demonstrate the effectiveness of the dif-
fusion cooperation scheme and indicate that the proposed algo-
rithms can still work well when the data distribution over nodes
is somewhat unbalanced.

V. DISCUSSION AND CONCLUSION

In this paper, we have considered the MMI criterion in
the context of distributed data clustering. Compared with the
K-means-based and the GMM-based clustering algorithms, the
MMI-based algorithms can capture the data structures beyond
the first and the second order statistics, thus leading to more
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satisfactory clustering results for datasets with complicated
data structures. Based on the MMI criterion, we have proposed
a “global-like” local cost function for each node. In order
to protect the privacy and save communication resource, we
have developed a two-step iterative scheme to perform the
optimization. Under this scheme, every node accomplishes its
local clustering task merely based on its own data and limited
information exchanges with its neighboring nodes. The pro-
posed cost function and iterative scheme constitute a general
framework for distributed MMI-based clustering. We have
realized a linear type of DMMI algorithm upon this framework,
by using the linear discriminative clustering model. The linear
DMMI algorithm is appreciate for linearly separable problems.
In addition, to handle linearly non-separable problems, we have
proposed the kernel DMMI algorithm by using the modified
kernel discriminative clustering function. The computational
complexity and the communication costs of the two DMMI
algorithms have been analyzed in detail. The performances
of the proposed algorithms are evaluated on three synthetic
datasets and one real dataset.

Our simulation results show that the diffusion cooperation
based DMMI algorithms, including the linear DMMI and kernel
DMMI, outperform the centralized K-means and the non-coop-
erative DMMI algorithms on all the synthetic datasets. The per-
formance of the diffusion DMMI algorithms is comparable to
the centralized MMI algorithms, both of which have low mis-
classification rates. Besides, the kernel DMMI shows excellent
ability in exploring the overall data structure for the real at-
mosphere dataset, which indicates that the proposed information
theoretic clustering algorithms are applicable in real distributed
applications like environmental monitoring. Additionally, in our
simulations, the proposed two DMMI algorithms maintain good
clustering performance in the cases of unbalanced data distribu-
tion over nodes, which further reflects the flexibility and appli-
cability of the algorithms for practical cases.
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