
A hybrid intelligent algorithm by combining particle swarm optimization
with chaos searching technique for solving nonlinear bilevel
programming problems

Zhongping Wan a, Guangmin Wang b,n, Bin Sun a

a School of Mathematics and Statistics, Wuhan University, Wuhan 430072, PR China
b School of Economics and Management, China University of Geosciences, Wuhan 430074, PR China

a r t i c l e i n f o

Keywords:
Nonlinear bilevel programming problems
Hybrid intelligent algorithm
Particle swarm optimization
Chaos search technique

a b s t r a c t

In this paper, a hybrid intelligent algorithm by combining the particle swarm optimization (PSO) with
chaos searching technique (CST) is presented for solving nonlinear bilevel programming problems. The
bilevel programming is transformed into a single level programming problem by use of the KKT
conditions of the lower level problem. Then, the hybrid intelligent algorithm is proposed to solve the
transformed problem. Our approach embeds the CST into PSO. Firstly, the algorithm is initialized by a
set of random particles which travel through the search space. Secondly, an optimization problem is
solved by CST to judge whether the particle is feasible or not. In each iteration, all the feasible particles
are ranked in ascending order. Particles in the front of list are updated by PSO, while particles in the end
of list are updated by CST. The CST used here is not only to enhance the particles but also to improve the
diversity of the particle swarm so as to avoid PSO trapping the local optima. Finally, the hybrid
intelligent algorithm is commented by illustrating the numerical results on several benchmark
problems from the references.

1. Introduction

The bilevel programming problem (BLP) is a nested optimiza-
tion problem with two levels (namely the upper and lower level)
in a hierarchy. The decision maker at the upper level (the leader)
firstly optimizes his/her objective function independently. After
the leader chooses the decision, the decision maker at the lower
level (the follower) makes his/her decision. The leader knows the
objective and constraint functions of the follower who may or
may not know the objective and (or) constraint functions of the
leader. However, the leaders decision is influenced by the reaction
of the follower. Since many practical problems, such as engineer-
ing design, management, economic policy and traffic problems,
can be formulated as hierarchical problems, BLP has been studied
and received increasing attention in the literatures. During the
last three decades, some surveys and bibliographic reviews were
given by several authors [1–3]. Reference books on bilevel
programming and related issues have emerged [4–6].

The bilevel programming problem is a nonconvex problem,
which is extremely difficult to solve. Firstly, Jeroslow [7] pointed

out, then Ben-Ayed and Blair [8] and Bard [9] proved sequentially
that the bilevel programming problem is a NP-Hard problem.
Vicente et al. [10] also showed that even the search for the local
optima to the bilevel linear programming is NP-Hard. See Ref. [11]
for more detailed discussion of the complexity issues in linear
bilevel programming problem. Therefore, many researchers are
devoted themselves into developing the algorithms for solving
BLP. Traditional approaches for solving BLP can be roughly
classified into the following categories [6]: vertex enumeration
methods, decent algorithm, approaches based on Kuhn–Tucker
condition and penalty functions, etc. The properties such as
differentiation and continuity are necessary when proposing the
traditional algorithms. Unfortunately, the bilevel programming
problem is nonconvex. Thus, many researchers tend to propose
the heuristic algorithms for solving the bilevel programming
problem because of their key characteristics of minimal problem
restrictions such as differentiation.

Mathieu et al. [12] firstly developed a genetic algorithm (GA)
for solving bilevel linear programming problem because of its
good characteristics such as simplicity, minimal problem restric-
tions, global perspective and implicit parallelism. Motivated by
the same reason, other kinds of genetic algorithm for solving
bilevel programming were also proposed in Refs. [13–19].
Because of the prominent advantage that neural computing can
converge to the equilibrium point (optimal solution) rapidly, the

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/swevo

Swarm and Evolutionary Computation

n Corresponding author.
E-mail addresses: zpwan-whu@126.com (Z. Wan),

wgm97@163.com (G. Wang).

Article history:

Received 11 October 2012
Received in revised form

29 June 2013
Accepted 8 August 2013
Available online 25 September 2013

Swarm and Evolutionary Computation 8 (2014) 26–32

& 2014 Elsevier B.V. All rights reserved.

2210-6502/$ - see front matter & 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.swevo.2014.08.001

www.elsevier.com/locate/swevo
www.elsevier.com/locate/swevo
dx.doi.org/10.1016/j.swevo.2012.08.001
dx.doi.org/10.1016/j.swevo.2012.08.001
dx.doi.org/10.1016/j.swevo.2012.08.001
mailto:zpwan-whu@126.com
mailto:wgm97@163.com
dx.doi.org/10.1016/j.swevo.2012.08.001

neural network approach was used to solve bilevel programming
problem in Refs. [20–23]. Tabu search [24–27], fuzzy [28–30],
simulated annealing [31], interactive fuzzy [32–35], rule sets [36],
ant colony optimization [37] and interactive fuzzy goal [38,39]
are also typical intelligent algorithms for solving bilevel program-
ming problem. Recently, particle swarm optimization (PSO) [40],
as a new algorithm of evolutionary computation, was also applied
to solve the bilevel programming problem [41,42]. The intelligent
algorithms have different characteristics as well as advantages
and disadvantages. To deal with complicated optimization pro-
blem, hybridizing these techniques is a natural choice to make
best of their advantages and avoid their disadvantages. Therefore,
what techniques to use and how to hybridize them are two major
problems to solve when designing a hybrid algorithms. Hybridiz-
ing different search methods (to combine global search and local
search methods or to combine the search operators of different
algorithms) has been widely used to solve the optimization
problems [43–48]. Furthermore, the hybrid algorithms are also
proposed to solve the bilevel programming problems. Yaakob and
Watada [49] integrate genetic algorithm and neural network to
produce a hybrid intelligent algorithm for solving bilevel pro-
gramming models. Kuo and Han [50] propose a hybrid of genetic
algorithm and particle swarm optimization to solve bilevel linear
programming problem. Wong et al. [51] apply a decision system,
based on an artificial neural network (ANN) and modified ant
colony optimization (ACO) to solve the stochastic dynamic lot-
sizing problem. In the methodology, ANN is used to learn the
simulation results, followed by the application of a real-valued
modified ACO algorithm to find the optimal decision variables. It
is well-known that PSO has the advantage of good convergence
performance and the disadvantage of easily trapping in local
minima. While, chaos searing techniques (CST) have the advan-
tage of easier jumping local optimal solution with the property of
nonrepeatedly traversal all the states according to its own ’’rules’’
in a certain range. Based on the above the fact, we propose a
hybrid intelligent algorithm for solving nonlinear bilevel pro-
gramming problems by combining global search method (PSO)
and local search method (CST). In our hybrid algorithm, CST is
embedded in the PSO to improve the worse particles for over-
coming the disadvantage that PSO may be trapped in local
minima. As the same time, CST is also used to judge the point is
feasible or not by solving problem (4). The aim of our proposed
algorithm is to combines the PSO’s advantage of good conver-
gence performance with the CST’s advantage of easier jumping
local optimal solution to overcome the limitations resulted from
the noncontinuity and nondifferentiability of the nonlinear pro-
gramming problems.

The remaining of this paper is organized as follows. Section 2
introduces the problem definition and properties of nonlinear
bilevel programming problems. Section 3 proposes a hybrid
algorithm by combining particle swarm optimization algorithm
and chaos searching technique for solving nonlinear bilevel
programming problems. Some illustrative examples are provided
in Sections 4 and 5 concludes the paper.

2. Problem definition and properties

The nonlinear bilevel programming problems(NBLP) consist of
two levels, namely, the upper and lower levels each having its
nonlinear objective function. NBLP are formulated as follows:

ðNBLPÞ min
x,y

Fðx,yÞ

s:t: gðx,yÞr0 where y solves the following problem

min
y

f ðx,yÞ

s:t: hðx,yÞr0 ð1Þ

where Fðx,yÞ, f ðx,yÞ are object functions of the upper and lower
level problems, respectively. gðx,yÞ and hðx,yÞ are the constraint
functions of the upper and lower level problems, respectively.
xARn1 ,yARn2 are the decision variables under the control of the
upper lower level problems, respectively.

Next we give the following definitions of the NBLP [4]:

The constraint region of NBLP

O¼ fðx,yÞ9gðx,yÞr0, hðx,yÞr0g

The projection of O onto the upper level’s decision space

OðXÞ ¼ fx9there exists y such that ðx,yÞAOg

For each fixed xAOðXÞ, the constraint region of the lower level
problem

OðxÞ ¼ fy9hðx,yÞr0g

For each fixed xAOðXÞ, the rational reaction set of the lower
level problem

MðxÞ ¼ fy9yAarg minff ðx,yÞ,yAOðxÞgg

The inducible region of NBLP

IR¼ fðx,yÞ9ðx,yÞAO,yAMðxÞg

Firstly, we suppose that Oa| is compact and OðXÞa|. For each
xAOðXÞ, the lower level problem (LP) is formulated as follows:

ðLPÞ min
y

f ðx,yÞ

s:t: hðx,yÞr0 ð2Þ

To avoid situations where (2) is not well posed, it is natural to
assume that OðxÞa| and MðxÞa|. Even so, NBLP may be not well
defined when the rational reaction set, M(x), is not single-
valued [4]. Bard [9] used examples to illustrate the difficulties
that often arise when M(x) is multivalued and discontinuous.
Here, we consider the situation that there is a unique solution to
the lower level problem for each fixed xAOðXÞ. The reader can
refer to [4,6] for how to do when that M(x) is multivalued. Then,
we can give the definitions of feasible solution and optimal
solution to NBLP as follows:

Definition 1. A point (x,y) is called to be feasible to NBLP if
ðx,yÞA IR.

Definition 2. A feasible point ðxn,ynÞ is called to be optimal to
NBLP if Fðxn,ynÞrFðx,yÞ,8ðx,yÞA IR.

From the definition of the feasible solution to NBLP, ðx,yÞ is a
feasible solution means that y solves problem (2) for fixed x. By
applying Kuhn–Tucker conditions for problem (2), there exists a l,
such that

ryf ðx,yÞþlTryhðx,yÞ ¼ 0

lT hðx,yÞ ¼ 0

lZ0 ð3Þ

where lARm is a column variable. Obviously, Eq. (3) can
be equivalently transformed into the optimization problem as
follows:

min
l

Jryf ðx,yÞþlTryhðx,yÞJ2þJlT hðx,yÞJ2

s:t: lZ0 ð4Þ

Therefore, if ðx,yÞ is a feasible solution to NBLP, there exists an
optimal solution to problem (4) and the optimal value equals
zero. That is to say, we can solve Eq. (3) to judge whether the
point ðx,yÞAS is feasible to NBLP.

Z. Wan et al. / Swarm and Evolutionary Computation 8 (2014) 26–32 27

Now, we can give the following definition:

Definition 3. Denote wðx,yÞ ¼minlZ0Jryf ðx,yÞþlTryhðx,yÞJ2þ
JlT hðx,yÞJ2 as the feasible weighting value of the point (x,y).

Obviously, the smaller the feasible weighting value is, the
closer (x,y) is near the feasible region. (x,y) is a feasible solution if
the feasible weighting value equals zero.

3. Design of the proposed algorithm

3.1. Brief introduction to PSO

The particle swarm optimization (PSO), which is a population-
based algorithm, was inspired by the social behavior of animals
such as fish schooling and bird flocking. Similar to other
population-based algorithms, such as evolutionary algorithms,
PSO can solve a variety of difficult optimization problems, and has
shown a faster convergence rate than other evolutionary algo-
rithms on some problems [40]. Another advantage of PSO is that it
has very few parameters to adjust, which makes it particularly
easy to implement.

In PSO, a number of simple entities the particles are placed in
the search space of some problem or function, and each evaluates
the objective function at its current location. Each particle then
determines its movement through the search space by combining
some aspect of the history of its own current and best (best-
fitness) locations with those of one or more members of the
swarm, with some random perturbations. The next iteration takes
place after all particles have been moved. Eventually the swarm,
like a flock of birds collectively foraging for food, is likely to move
close to an optimum of the fitness function.

Suppose that the search space is D-dimensional, then the ith
particle of the swarm can be represented by a D-dimensional
vector, Xi ¼ ðxi1,xi2, . . . ,xiDÞ. The velocity of this particle can be
represented by another D-dimensional vector Vi ¼ ðvi1,vi2, . . . ,viDÞ.
The best previously visited position of the ith particle is denoted
as pbest

i ¼ ðpi1,pi2, . . . ,piDÞ. The best previously visited position of
the swarm is denoted as gbest ¼ ðg1,g2, . . . ,gDÞ. Change the velocity
and position of the ith particle according to the following
equation (see notes below):

vkþ1
i ¼ vk

i þc1r1ðpbest&xk
i Þþc2r2ðgbest&xk

i Þ ð5Þ

xkþ1
i ¼ xk

i þvkþ1
i ð6Þ

where c1 and c2 are positive constant, called acceleration, and r1

and r2 are two random numbers, uniformly distributed in [0,1]. In
order to prevent the particle from leaving far away out of the
searching space, the constant Vmax was implemented for limiting
the velocity. Details about PSO can be referred to Refs. [53,54].

3.2. Brief introduction to CST

Chaos is a kind of nonperiodic moving style. It exists widely in
the nonlinear system and is unique to the system. It appears
stochastic but can be generated through deterministic means.
Chaos is a kind of unshaped out-of-order state, which blends with
specific forms relative to some ‘‘immobile points’’, ‘‘periodic
points’’ [55]. Chaos has subtle internal structure and it is a kind
of ‘‘strange attractor’’, which can attract the movement of system
and confine it within the specified range.

The chaos searching technique (CST) is a new kind of searching
method [55]. The basic idea of the algorithm is to transform the
variable of problems from the solution space to chaos space and
then perform search to find out the solution by virtue of the
randomicity, orderliness and ergodicity of the chaos variable.

Chaos searching technique includes two steps: firstly, search all
the points in turn within the changing range of variables and
taking the better point as the current optimum point; then regard
the current optimum point as the center, a tiny chaos disturbance
is imposed and more careful search is performed to find out the
optimum point. The chaos search technique has many advantages
such as not sensitive to the initial value, easy to skip out of the
locally minimum value, fast searching velocity and global gradual
convergence.

The following Logistic map is used to generate the chaos
sequence because it is more convenient to use:

ziþ1 ¼ mzið1&ziÞ ð7Þ

where ziA ½0,1(ði¼ 1,2, . . . ,Þ is the chaos variable, i ði¼ 1,2, . . . ,Þ is
the times of iteration; and m is the control parameter. It is easy to
testify that the system is entirely in chaos situation when m¼ 4
and the chaos space belongs to [0, 1].

3.3. The idea of the proposed algorithm

The main idea of our algorithm is to embed CST into PSO for
solving the nonlinear bilevel programming problems so as to
combine the their advantages and avoid their disadvantages. The
algorithm is described in details as follows: firstly, the particles of
the swarm are randomly initialed. Then, problem (4) is solved to
judge whether the particle is feasible or not. If there exists a
solution to problem (4) and the objective function value equals
zero, then the particle is feasible, and add the particle to the
feasible list and set the upper level’s objective function value as
the fitness value of the particle; otherwise, the particle is
infeasible, and add the particle to the infeasible list and set the
objective function value of problem (4) as the fitness value of the
particle. Secondly, the particles in the feasible list are ranked in
ascending order; after that, the particles in the infeasible list are
ranked in ascending order. Then, the velocity of particle near the
top and its new position will be assigned according to Eqs. (5) and
(6); and the particles in the end of the list are updated by use of
CST. After an iteration, the fitness values of the particles are
computed again. And repeat the above steps until the terminal
criterions are met.

3.4. Steps of the proposed algorithm

The flow chart of the proposed algorithm is shown in the
following Fig. 1.

The steps of the proposed algorithm are listed in details as
follows:

Step 1. Initialize the parameters. Population size (the number
of particles) is set M¼mþn, where m particles are updated by
PSO and n particles are updated by CST. Maximal velocity, Vmax,
two learning factors, c1 and c2, and two random variables, r1,
r2A ½0,1(, are initially set. The maximum number of iterations (T)
is set up to be used as the termination conditions of the algorithm
and set the counter of iteration t¼0.

Step 2. Initialize the particles. Initialize the ith (i¼ 1,2, . . . ,M)
particle randomly with initial position, Xi, within the pre-specified
range and velocity, Vi, in the range of maximal speed, Vmax. And
the best previously visited position of the ith (i¼ 1,2, . . . ,M)
particle, Pi

best, is initialized as Xi.
Step 3. Compute the fitness values of the particles. Eq. (4) is

solved by use of CST. If there exists a solution to problem (4) and
the objective function value equals zero, then the particle is
feasible, and add the particle to the feasible list and set the upper
level’s objective function value as the fitness value of the particle;
otherwise, the particle is infeasible, and add the particle to the

28 Z. Wan et al. / Swarm and Evolutionary Computation 8 (2014) 26–32

infeasible list and set the objective function value of problem (4)
as the fitness value of the particle.

Step 4. Rank the particles. The particles in the feasible list are
ranked in ascending order; After that, the particles in the
infeasible list are ranked in ascending order.

Step 5. Update the local best position, Pi
best, and global best

position, gbest. For the ith (i¼ 1,2, . . . ,M) particle, compare parti-
cle’s fitness evaluation with its Pi

best. If current value is better than
Pi

best, then set the current value to Pi
best. Compare the first particle’s

fitness evaluation with the global best position, gbest. If current
value is better than gbest, then set the current value to gbest.

Step 6. Update the particles. For the first m particles,
the velocity of particle and its new position will be assigned according

to Eqs. (5) and (6); And the n particles in the end of the list are
updated using the CST with the initial chaos variable Xi.

Step 7. Terminal conditions. t¼ tþ1, If the number of itera-
tions is larger than the maximum number of iterations (T), goto
Step 8, otherwise goto Step 3.

Step 8. Output the results. Output the optimal particle, com-
pute and output the upper level and lower level’s objective
function values.

Notes: Firstly, the CST is not only used to solve problem (4) but
also embedded in the PSO to improve the worse particles. This way
not only enhances the particles but also improves the diversity of
the particle swarm to avoid PSO trapping the local optima. Secondly,
the upper level and lower level’s decision variables are all randomly

Fig. 1. The flow chart of the proposed hybrid intelligent algorithm.

Z. Wan et al. / Swarm and Evolutionary Computation 8 (2014) 26–32 29

generated and updated by PSO or CST in our algorithm, which is
different from the way that only the upper level’s decision variable
is encoding and the lower level’s decision variable is computed
according to the upper level’s decision variable [14,42]. And, the
feasible weighting value is introduced to replace the fitness value of
the particle when it is infeasible, which can force the infeasible
particle to be feasible. Thirdly, in the early stage of the algorithm, the
feasible weighting value is used to rank the infeasible particles,
which can avoid the situation that the infeasible particle is denoted
as the best particle although it is the best of all when only the fitness
value is used by all particles.

4. Computational experiments

In this section, the problems from references are presented to
illustrate the feasibility and efficiency of the adaptive genetic
algorithm. The parameters are set as follows: population size (the
number of particles) M¼45, where m¼40 and n¼5; maximal
velocity Vmax ¼ 2, two learning factors, c1 ¼ c2 ¼ 2 and the max-
imum number of iterations T¼8.

Firstly, we consider the following problem from Example 1 in
Ref. [56] and solve it by our proposed algorithm:

min
x

Fðx,yÞ ¼ ðx1&30Þ2þðx2&20Þ2&20y1þ20y2

s:t: x1þ2x2Z30, x1þx2r25, x2r15

min
0ryr10

f ðx,yÞ ¼ ðx1&y1Þ
2þðx2&y2Þ

2

We execute the proposed algorithm in 10 independent runs, the
best solution is ðxn,ynÞ ¼ ð19:99984:7573,9:9501,4:959Þ and the
upper level’s objective function Fðxn,ynÞ ¼ 232:5219 as well as the
lower level’s objective function f ðxn,ynÞ ¼ 101:0372 at the best
solution ðxn,ynÞ, which are all near the exact values ðx,yÞ ¼ ð20,5,
10,5Þ,Fðx,yÞ ¼ 225 and f ðx,yÞ ¼ 100. The variety of fitness value in the
algorithm is demonstrated in the following figure (Fig. 2).

For further test, we execute the proposed algorithm 50
independent runs on each problem. The best solution ðxn,ynÞ and
the upper level’s objective function Fðxn,ynÞ as well as the lower
level’s objective function f ðxn,ynÞ at the best solution ðxn,ynÞ are
recorded. The comparison of the results in our paper with those in
Ref. [14] are listed in Tables 1 and 2. And the best solution in Ref.
[14] is denoted by (x,y), and the upper level’s objective function

Fig. 2. The fitness values vary as the number of iteration.

Table 1
Comparison of the best solution in our paper with that in references.

No. Results by PSO-CST Results in Ref. [14] Results in corresponding ref.
ðxn ,ynÞ (x,y) ðx ,yÞ

13Þ in Ref. [14] (0.3844,1.6124,1.8690,0.8041) (4.4e&7,2,1.875,0.9063) (0,2,1.875,0.9063)

24Þ in Ref. [14] (0.1324,0.1754,0.6935,0.7327,0.2273) (1.25e&13,0.9,0,0.6,0.4) (0,0.9,0,0.6,0.4)

311Þ in Ref. [14] (0.1511,0.6256,0.369) (1.4e&12,1,7.07e&13) NA

413Þ in Ref. [14] (10.0020,9.9961) (10.0,10.0) (10.03,9.969)

514Þ in Ref. [14] (1.8602,0.9073,0.005) (1.8888,0.8889,0) NA

617Þ in Ref. [14] (7.0321,6.842047,5.9071,6.8312) (7.0709,7.0713,7.0709,7.0703) (7.0854,7.0291,7.0854,0)

721Þ in Ref. [14] (17.5039,29.8906,&2.4994,9.8894) (0,30,&10,10) NO

822Þ in Ref. [14] (12.4124,19.3109,&7.5859,&0.6899) (0,30,&10,10) NO

923Þ in Ref. [14] (17.2024,7.4665,7.2189,2.4251) ð20,5,10,5Þ NO

1024Þ in Ref. [14] (0.1946,14.9870,6.1019,7.9628) ð19:5629,5:2722,10,5:2722Þ NO

1125Þ in Ref. [14] (10.6084,10.0550,9.4545,5.1257) ð6:2048,12:8594,6:2048,10Þ NO

1226Þ in Ref. [14] (0.8606,1.4599,0.3138) (1.8888,0.8889,0) NO

1327Þ in Ref. [14] (0.9099,1.5294,0.1762) (0.6648,1.5746,0.0721) NO

1428Þ in Ref. [14] (0.9233,1.5083,0.1899) (0.6648,1.5746,0.0721) NO

Notes: ‘‘NA’’ means that the result is not available for the algorithm. ‘‘NO’’ means that problem from 10 to 18 only appear in Ref. [14].

30 Z. Wan et al. / Swarm and Evolutionary Computation 8 (2014) 26–32

Fðx,yÞ as well as the lower level’s objective function f ðx,yÞ at the
best solution (x,y) are listed. The solution in corresponding
reference is denoted by ðx,yÞ, and the upper level’s objective
function Fðx,yÞ as well as the lower level’s objective function
f ðx,yÞ at the solution ðx,yÞ are listed.

The algorithm in Ref. [14] can guarantee that a global optimal
solution is computed. We transform the bilevel programming into
the single level programming using the KKT condition of the
lower level problem, which is as same as that in Ref. [14]. But, our
algorithm is more simple although our algorithm cannot guaran-
tee a global optimal solution. Furthermore, in our algorithm, the
upper level decision maker has predominance over the lower
level decision maker, which is in accordance with the structure of
bilevel programming. From Tables 1 and 2, we can obtain the
following comments about our algorithm and the algorithm in
Ref. [14]: the results by our algorithm are mostly in accordance
with those by the NEA in Ref. [14] such as Examples 3, 4, 5, 6, 10
and 12. For some problems, such as Examples 2, 7 and 8, the
upper level’s objective function values by our algorithm is not
worse than those by the algorithm in Ref. [14], while the lower
level’s objective function values by our algorithm is better than
those by the algorithm in Ref. [14]. For Examples 1, 9, 11, 13 and
14, the upper level’s objective function values by our algorithm is
not worse than those by the algorithm in Ref. [14], while the
lower level’s objective function values by our algorithm is worse
than those by the algorithm in Ref. [14]. The reason is that our
algorithm prefers to the upper level’s objective function.

5. Conclusions and future works

In this paper, we propose a hybrid intelligent algorithm to solve
bilevel programming problems. In the proposed method, the CST is
embedded in the PSO to enhance the worse particles and to improve
the diversity of the particle swarm in order to avoid PSO trapping
the local optima. The numerical results on several benchmark
problems have shown that the proposed algorithm is feasible.

Generally speaking, the parameters of the intelligent algorithm
have great influence on the convergence and performance. So in
our future works, the following will be researched:

(1) Influence of the parameters in our algorithm on the perfor-
mance and convergence, through which the appropriate
parameters for the different problem can be obtained.

(2) Research to demonstrate the efficiency of the proposed
algorithm by solving more and larger scale examples gener-
ated as the references.

(3) Comparison with other algorithms by solving more examples.

Acknowledgments

The authors would like to thank anonymous referees for their
invaluable comments and suggestions. This research was partially
funded by the National Natural Science Foundation of China (No.
71171150 and 71201146), the Social Science Foundation of
Ministry of Education (No. 10YJC630233) and the Fundamental
Research Funds for the Central Universities, China University of
Geosciences Wuhan (No. CUG120410).

References

[1] L. Vicente, P.H. Calamai, Bilevel and multibilevel programming: a bibliogra-
phy review, Journal of Global Optimization 5 (1994) 291–305.

[2] S. Dempe, Annotated bibliography on bilevel programming and mathematical
programs with equilibrium constraints, Optimization 52 (2003) 333–359.

[3] B. Colson, P. Marcotte, G. Savard, Bilevel programming: a survey, A Quarterly
Journal of Operations Research 3 (2005) 87–107.

[4] J.F. Bard, Practical Bilevel Optimization: Algorithm and Applications, Kluwer
Academic Publishers, Dordrecht, 1998.

[5] A. Migdalas, P.M. Pardalos, P. Varbrand, Multilevel Optimization: Algorithms
and Applications, Kluwer Academic Publishers, Dordrecht, 1998.

[6] S. Dempe, Foundation of Bilevel Programming, Kluwer Academic Publishers,
London, 2002.

[7] R. Jeroslow, The polynomial hierarchy and a simple model for competitive
analysis, Mathematical Programming 32 (1985) 146–164.

[8] O. Ben-Ayed, O. Blair, Computational difficulty of bilevel linear programming,
Operations Research 38 (1990) 556–560.

[9] J.F. Bard, Some properties of the bilevel linear programming, Journal of
Optimization Theory and Applications 68 (1991) 371–378.

[10] L. Vicente, G. Savard, J. Judice, Decent approaches for quadratic bilevel
programming, Journal of Optimization Theory and Applications 81 (1994)
379–399.

[11] X. Deng, Complexity issues in bilevel linear programming, in: A. Migdalas,
P.M. Pardalos, P. Varbrand (Eds.), Multilevel Optimization: Algorithms and
Applications, Kluwer Academic Publishers, Dordrecht, 1998, pp. 149–164.

[12] R. Mathieu, L. Pittard, G. Anandalingam, Genetic algorithm based approach to
bi-level linear programming, RAIRO-Operations Research 28 (1) (1994) 1–21.

[13] S.R. Hejazi, A. Memariani, G. Jahanshanloo, M.M. Sepehri, Linear bilevel
programming solution by genetic algorithm, Computers & Operations
Research 29 (2001) 1913–1925.

[14] Y.P. Wang, Y.C. Jiao, H. Li, An evolutionary algorithm for solving nonlinear
bilevel programming based on a new constraint-handing scheme, IEEE
Transactions on Systems Man and Cybernetics: Part C 35 (2) (2005) 221–232.

Table 2
Comparison of the upper level’s and the lower level’s objective function values at the best solution in our paper with those in references.

No. Results by PSO-CST Results in Ref. [14] Results in corresponding ref.

Fðxn ,ynÞ f ðxn ,ynÞ Fðx,yÞ f ðx,yÞ Fðx ,yÞ f ðx ,yÞ

13Þ in Ref. [14] &14.7772 &0.2316 &12.68 &1.016 &12.68 &1.016

24Þ in Ref. [14] &29.2064 2.3641 &29.2 3.2 &29.2 3.2

311Þ in Ref. [14] 640.7139 0.9946 1000 1 1000 1

413Þ in Ref. [14] 100.0393 0.0000 100.0001 3.5e&11 100.58 0.001

514Þ in Ref. [14] &1.1660 7.4441 &1.2098 7.6168 3.57 2.4

617Þ in Ref. [14] 1.9816 &1.9816 1.9802 &1.9802 1.9760 &1.9454

721Þ in Ref. [14] 0.0527 0.0000 0 100 NO

822Þ in Ref. [14] 0.0004 0.0000 0 100 NO

923Þ in Ref. [14] 0.0075 125.0854 0 100 NO

1024Þ in Ref. [14] 0.0000 84.2367 6.86e&15 91.45 NO

1125Þ in Ref. [14] 0.0001 25.6292 1.47e&14 8.18 NO

1226Þ in Ref. [14] 0.0082 2.5621 2.22e&16 7.62 NO

1327Þ in Ref. [14] 0.0374 2.6969 1.22e&16 2.50 NO

1428Þ in Ref. [14] 0.0337 2.7442 1.22e&16 2.50 NO

Notes: ‘‘NO’’ means that problem from 10 to 18 only appear in Ref. [14].

Z. Wan et al. / Swarm and Evolutionary Computation 8 (2014) 26–32 31

[15] G.M. Wang, X.J. Wang, Z. Wan, et al., An adaptive genetic algorithm for
solving bilevel linear programming problem, Applied Mathematics and
Mechanics 28 (12) (2007) 1605–1612.

[16] H.I. Calvete, C. Gate, P.M. Mateo, A new approach for solving linear bilevel
problems using genetic algorithms, European Journal of Operational Research
188 (2008) 14–28.

[17] K. Deb, A. Sinha, An evolutionary approach for bilevel multi-objective
problems, Cutting-Edge Research Topics on Multiple Criteria Decision Mak-
ing, Part 1 35 (2009) 17–24.

[18] K. Deb, A. Sinha, Solving bilevel multi-objective optimization problems using
evolutionary algorithms, Evolutionary Multi-Criterion Optimization 5467
(2009) 110–124.

[19] M.Q. Li, D. Lin, S.Y. Wang, Solving a type of biobjective bilevel programming
problem using NSGA-II, Computers & Mathematics with Applications 59 (2)
(2010) 706–715.

[20] H.S. Shih, U.P. Wen, E.S. Lee, et al., A neural network approach to multi-objective
and multilevel programming problems, Computers and Mathematics with
Applications 48 (2004) 95–108.

[21] K.M. Lan, U.P. Wen, H.S. Shih, et al., A hybrid neural network approach to
bilevel programming problems, Applied Mathematics Letters 20 (8) (2007)
880–884.

[22] Y.B. Lv, T.S. Hu, G.M. Wang, Z. Wan, A neural network approach for solving
nonlinear bilevel programming problem, Computers and Mathematics with
Applications 55 (12) (2008) 2823–2829.

[23] S.B. Yaakob, J. Watada, Double-layered hybrid neural network approach for
solving mixed integer quadratic bilevel problems, Integrated Uncertainty
Management and Applications 68 (2010) 221–230.

[24] U.P. Wen, A.D. Huang, A simple tabu search method to solve the mixed-
integer linear bilevel programming problem, European Journal of Operational
Research 88 (3) (1996) 563–571.

[25] M. Gendreau, P. Marcotte, G. Savard, A hybrid Tabu-ascent algorithm for the
linear bilevel programming problem, Journal of Global Optimization 8 (3)
(1996) 217–233.

[26] J. Rajesh, K. Gupta, H.S. Kusumakar, et al., A tabu search based approach for
solving a class of bilevel programming problems in chemical engineering,
Journal of Heuristics 9 (4) (2003) 307–319.

[27] H. Küc- ükaydın, N. Aras, €l.K. Altınel, A hybrid tabu search heuristic for a bilevel
competitive facility location model, Hybrid Metaheuristics 6373 (2010)
31–45.

[28] J.d. Oña, P. Gómez, E. Mérida-Casermeiro, Bilevel fuzzy optimization to pre-
process traffic data to satisfy the law of flow conservation, Transportation
Research Part C: Emerging Technologies 19 (1) (2011) 29–39.

[29] M. Sakawa, T. Matsui, Stackelberg solutions for random fuzzy two-level linear
programming through possibility-based probability model, Expert Systems
with Applications (2012), http://dx.doi.org/10.1016/j.eswa.2012.03.001.

[30] M. Sakawa, H. Katagiri, T. Matsui, Stackelberg solutions for fuzzy random
two-level linear programming through probability maximization with pos-
sibility, Fuzzy Sets and Systems 188 (1) (2012) 45–57.

[31] H.S. Kemal, A.R. Ciric, Dual temperature simulated annealing approach for
solving bilevel programming problems, Computers & Chemical Engineering
23 (1) (1998) 11–25.

[32] G.M. Wang, X.J. Wang, Z. Wan, A fuzzy interactive decision making algorithm
for bilevel multi-followers programming with partial shared variables among
followers, Expert Systems with Applications 36 (7) (2009) 10471–10474.

[33] G.Q. Zhang, J. Lu, Fuzzy bilevel programming with multiple objectives and
cooperative multiple followers, Journal of Global Optimization 47 (3) (2010)
��3–419.

[34] Y. Zheng, Z. Wan, G.M. Wang, A fuzzy interactive method for a class of bilevel
multiobjective programming problem, Expert Systems with Applications 38
(8) (2011) 10384–10388.

[35] M. Sakawa, H. Katagiri, T. Matsui, Interactive fuzzy random two-level linear
programming through fractile criterion optimization, Mathematical and
Computer Modelling 54 (11–12) (2011) 3153–3163.

[36] Z. Zheng, J. Lu, G.Q. Zhang, et al., Rule sets based bilevel decision model and
algorithm, Expert Systems with Applications 36 (1) (2009) 18–26.

[37] H.I. Calvete, C. Gale, M.J. Oliveros, Bilevel model for production-distribution
planning solved by using ant colony optimization, Computers & Operations
Research 38 (1) (2011) 320–327.

[38] S.R. Arora, R. Gupta, Interactive fuzzy goal programming approach for bilevel
programming problem, European Journal of Operational Research 194 (2)
(2009) 368–376.

[39] S. Dempe, Comment to ‘‘Interactive fuzzy goal programming approach for
bilevel programming problem’’ by S.R. Arora and R. Gupta, European Journal
of Operational Research 212 (2) (2011) 429–431.

[40] J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kaufmann Publishers,
2001.

[41] X. Li, P. Tian, X. Min, A hierarchical particle swarm optimization for solving
bilevel programming problems, in: Proceedings of the 8th International
Conference on Artificial Intelligence and Soft Computing (ICAISC), Poland,
Lecture Notes in Computer Science, 2006, pp. 1169–1178.

[42] R.J. Kuo, C.C. Huang, Application of particle swarm optimization algorithm for
solving bi-level linear programming problem, Computers and Mathematics
with Applications 58 (2009) 678–685.

[43] B. Alatas, E. Akin, A.B. Ozer, Chaos embedded particle swarm optimization
algorithms, Chaos, Solitons and Fractals 40 (2009) 1715–1734.

[44] K. Chandrasekaran, S.P. Simon, Multi-objective scheduling problem: hybrid
approach using fuzzy assisted cuckoo search algorithm, Swarm and Evolu-
tionary Computation 5 (2012) 1–16.

[45] S. Das, U. Halder, D. Maity, Chaotic dynamic characteristics of social foraging
swarms – an analysis, IEEE Transactions on Systems, Man and Cybernetics
(SMC) Part B 42 (2012) 1288–1293.

[46] A.H. Gandomi, X.S. Yang, S. Talatahari, et al., Firefly algorithm with chaos,
Communications in Nonlinear Science and Numerical Simulation 18 (2013)
89–98.

[47] S. Talatahari, B.F. Azar, R. Sheikholeslami, et al., Imperialist competitive
algorithm combined with chaos for global optimization, Communications in
Nonlinear Science and Numerical Simulation 17 (2012) 1312–1319.

[48] Y. Wang, J. Zhou, Y. Lu, et al., Chaotic self-adaptive particle swarm optimiza-
tion algorithm for dynamic economic dispatch problem with valve-point
effects, Expert Systems with Applications 38 (2011) 14231–14237.

[49] S.B. Yaakob, J. Watada, A hybrid intelligent algorithm for solving the bilevel
programming models, Knowledge-Based and Intelligent Information and
Engineering Systems 6277 (2010) 485–494.

[50] R.J. Kuo, Y.S. Han, A hybrid of genetic algorithm and particle swarm optimiza-
tion for solving bi-level linear programming problem—a case study on supply
chain model, Applied Mathematical Modelling 35 (2011) 3905–3917.

[51] J.T. Wong, C.T. Su, C.H. Wang, Stochastic dynamic lot-sizing problem using bi-
level programming base on artificial intelligence techniques, Applied Math-
ematical Modelling 36 (5) (2012) 2003–2016.

[53] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization: an overview,
Swarm Intelligence 1 (2007) 33–57.

[54] J.F. Schutte, A.A. Groenwold, A study of global optimization using particle
swarms, Journal of Global Optimization 31 (2005) 93–108.

[55] V. Zayats, Chaos searching algorithm for second order oscillatory system, in:
Proceedings of the International Conference on Modern Problems of Radio
Engineering, Telecommunications and Computer Science, 2002, pp. 97–98.

[56] K. Shimizu, E. Aiyoshi, A new computational method for Syackelberg and
min–max problems by use of a penalty method, IEEE Transactions on
Automatic Control AC-26 (2) (1981) 460–466.

32 Z. Wan et al. / Swarm and Evolutionary Computation 8 (2014) 26–32

dx.doi.org/10.1016/j.eswa.2012.03.001
dx.doi.org/10.1016/j.eswa.2012.03.001
dx.doi.org/10.1016/j.eswa.2012.03.001

	A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving...
	Introduction
	Problem definition and properties
	Design of the proposed algorithm
	Brief introduction to PSO
	Brief introduction to CST
	The idea of the proposed algorithm
	Steps of the proposed algorithm

	Computational experiments
	Conclusions and future works
	Acknowledgments
	References

