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Abstract

Linear discriminant analysis (LDA) is a traditional statistical technique that

reduces dimensionality while preserving as much of the class discriminatory in-

formation as possible. The conventional form of the LDA assumes that all the

data are available in advance and the LDA feature space is computed by finding

the eigendecomposition of an appropriate matrix. However, there are situations

where the data are presented in a sequence and the LDA features are required

to be updated incrementally by observing the new incoming samples. Chatter-

jee and Roychowdhury proposed an algorithm for incrementally computing the

LDA features followed by Abrishami Moghaddam et al. who accelerated the

convergence rate of these algorithms. The proposed algorithms by Abrishami

Moghaddam et al. are derived by applying the chain rule on an implicit cost

function. Since the authors have not had access to the cost function they could

not analyse the convergence of the proposed algorithms and the convergence

of the proposed accelerated techniques were not guaranteed. In this paper,

we briefly review the previously proposed algorithms, then we derive new al-

gorithms to accelerate the convergence rate of the incremental LDA algorithm

given by Chatterjee and Roychowdhury. The proposed algorithms are derived

by optimizing the step size in each iteration using steepest descent and conju-

∗Corresponding author. Phone +1 343 333 4863, Fax +1 416 597 3031.
Email addresses: aliyari@cs.toronto.ca (Youness Aliyari Ghassabeh ),

frank@ai.toronto.ca (Frank Rudzicz), moghaddam@eetd.kntu.ac.ir (Hamid Abrishami
Moghaddam)

Preprint submitted to Pattern Recognition December 18, 2014

 
 

 



gate direction methods. We test the performance of the proposed algorithms

for incremental LDA on synthetic and real data sets. The simulation results

confirm that the proposed algorithms estimate the LDA features faster than

the gradient descent based algorithm presented by Abrishami Moghaddam et

al., and the algorithm proposed by Chatterjee and Roychowdhury.

Keywords: Incremental linear discriminant analysis, Accelerated algorithm,

Steepest descent method, Conjugate direction method, Feature extraction.

1. Introduction

Linear discriminant analysis (LDA) is a popular supervised technique for

both dimensionality reduction and classification. The LDA has been widely

used as a powerful yet simple technique for different applications in computer

vision and pattern recognition community (e.g., [1, 2, 3, 4, 5, 6, 7]). The LDA

technique looks for a linear transformation of the data into a lower dimensional

space, for maximum discrimination between classes [8].

The typical implementation of the LDA technique requires that all samples

are available in advance. However, there are situations where the entire data

set is not available and the input data are observed as a stream. In this case,

it is desirable for the LDA feature extraction to have the ability to update

the computed LDA features by observing the new samples without running the

algorithm on the whole data set. For example, in many real-time applications

such as mobile robotics or on-line face recognition, it is important to update

the extracted LDA features as soon as new observations are available. An

LDA feature extraction technique that can update the LDA features by simply

observing new samples is an incremental LDA algorithm, and this idea has been

extensively studied over the last two decades.

There have been two main approaches to updating LDA features: indirect

and direct. In the indirect approach, the incremental algorithms are used to

update the matrices which are involved in computing the LDA features and

then the LDA features are computed through solving an eigendecomposition
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problem. For example, Pang et al. [9] presented incremental algorithms to

update the within-class and between-class scatter matrices and used them to

update the LDA features. Ye et al. [10] used an incremental dimension reduc-

tion (IDR) algorithm with QR decomposition for adaptive computation of the

reduced forms of within-class and between-class scatter matrices. The proposed

algorithm by Uray et al. [11] involves performing PCA on a augmented matrix

and then updating the LDA features. Kim et al. [12][13] used sufficient span-

ning approximation for updating the mixture scatter matrix, the between-class

scatter matrix, and the projected data matrix. None of these algorithms deals

with the LDA features directly, and updating the LDA features is instead done

by solving an eigenvalue decomposition problem.

In contrast to the techniques above, there are incremental algorithms that

update LDA features directly. Chatterjee and Roychowdhury [14] proposed

an incremental self-organized LDA algorithm for updating the LDA features.

The incremental LDA algorithm in [14] is composed of two parts: incremental

computation of Q−1/2, where Q is the correlation matrix of the input data, and

incremental principal component analysis (PCA). In other work, Demir and

Ozmehmet [15] proposed online local learning algorithms for updating LDA

features incrementally using error-correcting and the Hebbian learning rules.

Both algorithms in [14] and [15] are highly dependent on the step size, which

can be difficult to set a priori. Abrishami Moghaddam et al. [16][17][18] derived

new incremental algorithms to accelerate the convergence rate of the proposed

algorithm in [14]. The proposed algorithms are derived based on the steepest

descent, conjugate direction, Newton-Raphson, and quasi-Newton methods.

Abrishami Moghaddam et al. [16, 17, 18] used an implicit cost function to

find the optimal step size in order to accelerate the convergence rate. Since the

authors in [16, 17, 18] have not had access to the explicit cost function, they

could not guarantee the convergence of the proposed algorithms.

In this paper, we first briefly discuss the proposed algorithms in [16] and

[17]. Then we use the steepest descent and conjugate direction methods to

derive accelerated incremental algorithms for computingQ−1/2. We use the cost
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function in [19] to derive the accelerated Q−1/2 algorithm based on the steepest

descent method. We also present a new algorithm for incremental computation

of Q−1/2 using the conjugate direction method, and we introduce its accelerated

version by optimizing the step size in each iteration. Finally, we combine the

proposed accelerated incremental Q−1/2 algorithm with incremental PCA to

derive an accelerated incremental LDA algorithm. We test the performance

of the proposed algorithms using synthetic and real data sets and show that

the proposed algorithms give a reliable estimate of the LDA features in fewer

iterations than the algorithm in [14], and the gradient descent version in [16],

and [17]. The incremental nature of the proposed accelerated LDA algorithms

make them appropriate for fast feature extraction when the data are presented

as a stream and the features can be updated as soon as each new observation

is available.

The organization of the paper is as follows: in the next section, a brief

review of the LDA algorithm is given. The accelerated incremental LDA feature

extraction algorithm is described in Section 3. We present the acceleratedQ−1/2

algorithm in Section 4. Section 5 is devoted to simulation results. Concluding

remarks are given in Section 6.

2. Linear discriminant analysis

Let xi ∈ R
d, i = 1, 2, . . . denote the observed data which belongs to exactly

one of the available K classes, ω1, . . . , ωK , and let P (ωi), i = 1, . . . ,K denote

the prior probability of the ith class ωi. Let mi, i = 1, . . . ,K denote the mean

vector for class ωi, i.e., mi = E(x|x ∈ ωi), and let Σi denote the covariance

matrix of the ith class, i.e., Σi = E[(x−mi)(x−mi)
t|x ∈ ωi], i = 1, . . . ,K. In

order to achieve the maximum class separability, in addition to dimensionality

reduction, the following three matrices are defined [20]:

1. Within-class scatter matrix ΣW

ΣW =
K∑
i=1

P (ωi)E[(x−mi)(x−mi)
t|x ∈ ωi] =

K∑
i=1

P (ωi)Σi, (1)
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2. Between-class scatter matrix ΣB

ΣB =

K∑
i=1

P (ωi)(m−mi)(m−mi)
t, (2)

3. Mixture scatter matrix Σm
1

Σm = E[(x−m)(x−m)t] = ΣW +ΣB , (3)

where m is total mean vector, i.e., m = E(x) =
∑K

i=1 P (ωi)mi. The within-

class scatter matrix, ΣW , represents the scatter of samples around their class

means, the between-class scatter matrix, ΣB , represents the scatter of class

means around the total mean, and the mixture scatter matrix, Σm, is the co-

variance of data samples regardless of the class to which they belong. The

LDA technique looks for the direction in which maximum class separability is

achieved by projection of the data into those directions. That is, after projec-

tion of the data into the LDA feature space, all the samples belonging to the

same class stay close together and well separated from the samples of the other

classes. In order to quantify this, different measures of separation have been

defined, for example [20]

J1 = Tr(Σ−1
W ΣB) ; J2 =

Tr(ΣB)

Tr(ΣW )
; J3 = ln ‖Σ−1

W ΣB‖ ; J4 =
detΣB

detΣW
. (4)

It can be shown that the LDA transformation matrix,ΦLDA,p, into a p-dimensional

(p < D) space is given by p leading eigenvectors ofΣ−1
W ΣB [21]. SinceRank(ΣB) ≤

K− 1, then the reduced dimension by the LDA technique is at most K− 1, i.e.,

p ≤ K − 1. The between-class scatter matrix, ΣB , is not in general a full rank

matrix and using (3) it can be replaced by Σm −ΣW . As a result, instead of

finding leading eigenvectors of Σ−1
W ΣB , one can solve the generalized eigenvalue

problem

ΣmΦLDA = ΣWΦLDAΛ, (5)

where Λ is the diagonal eigenvalue matrix and the desired p LDA features are

given by p columns of ΦLDA corresponding to the largest eigenvalues of Λ [20].

1This is also called the covariance matrix.
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Further manipulation of (5) reveals that the above problem can be simplified to

the following symmetric eigenvalue problem2

Σ
−1/2
W ΣmΣ

−1/2
W Ψ = ΨΛ, (6)

where Ψ = Σ
1/2
W ΦLDA. Note that since in most of the real world applica-

tions the statistics of the observed data are not available, the above mentioned

matrices can be found as [20]

Σm =
1

n

n∑
i=1

(xi −m)(xi −m)t ;ΣB =
1

n

K∑
j=1

|ωj |(mj −m)(mj −m)t

ΣW =
1

n

K∑
j=1

∑
x∈ωj

(x−mj)(x−mj)
t, (7)

where n is the total number of samples, and |ωj |, j = 1, . . . ,K denotes the size

of class ωj , i.e.,
∑K

j=1 |ωj | = n.

3. Fast incremental LDA feature extraction

As mentioned, the main LDA features are the eigenvectors of Σ−1
W Σ as-

sociated with the largest eigenvalues. Let xk ∈ R
D, k = 1, 2, . . . , denote the

observed vector sequence such that xk belongs to exactly one of K classes

ω1, . . . , ωK . Define three new sequences {yk}k=1,2,..., {zk}k=1,2,..., and {uk}k=1,2,...

as follows

yk = xk −m
ωxk

k ; zk = xk −mk;uk = Wkzk, (8)

where m
ωxk

k denotes the sample mean of the class to which xk belongs at the

k-th iteration, Wk is estimate of the inverse of the square root of the covariance

matrix (next section is devoted to incremental computation of Wk), and mk

denotes the total mean estimate at the k-th iteration, i.e. mk =
∑k

i=1 xi/k.

Each new incoming sample updates the total class mean and the class mean to

2The within-scatter matrix, ΣW , is the sum of positive definite matrices, therefore itself

is also a positive definite matrix and Σ
−1/2
W exists.
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which it belongs, and keeps the other class means unchanged. From theorem 2

and theorem 3 in [14], we have

lim
k→∞

E
[
zkz

t
k

]
= Σm, (9)

lim
k→∞

E
[
yky

t
k

]
= ΣW , (10)

lim
k→∞

E
[
uku

t
k

]
= Σ

−1/2
W ΣmΣ

−1/2
W . (11)

Let Q−1/2 denote an algorithm that estimates the inverse of the square root of

the covariance matrix Σ of its input data, e.g., if {xk}k=1,2,..., then the output

is an estimate of Σ−1/2. In other words, the Q−1/2 algorithm takes xk’s as its

input and generates a sequence {Wk}k=1,2,... that converges to the inverse of

the square root of the covariance matrix of xk’s. Equation (10) implies that if

the Q−1/2 algorithm is trained using the sequence {yk}k=1,2,..., then the output

of the Q−1/2 algorithm will converge to Σ
−1/2
W , i.e., limk→∞ Wk = Σ

−1/2
W .

Vector sequence

{xk}k=1,2,... Update mk

Update m
ωxk

k

{yk}k=1,2,...

Find
ηk,opt

Z−1
Wk−1

Wk → Σ
−1/2
W ×

Φp
k,LDA → Φp

LDA

Desired p LDA features

Σ
1
/
2

W
Φ

p k
,L

D
A

Q−1/2

algorithm
yk = xk −m

ωxk

k

zk = xk −mk ×
{zk}k=1,2,... {uk}k=1,2,... Eigenvectors of

Correlation of {uk}

Figure 1: Accelerated incremental LDA feature extraction. The random vector se-

quence {xk}k=1,2,... is observed sequentially and is used to generate two new sequences

{yk}k=1,2,... and {zk}k=1,2,.... The sequence {yk}k=1,2,... is used to train accelerated

Q−1/2 algorithm. The new sequence {uk}k=1,2,... is generated by product of the out-

put of Q−1/2 algorithm and the sequence {zk}k=1,2,.... The p leading eigenvectors of

the correlation matrix of the sequence {uk} and output of Q−1/2 algorithm are used

to update the LDA features.

Chatterjee and Roychowdhury [14] showed that, in order to extract the lead-

ing LDA features incrementally, we need to compute the leading eigenvectors of
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the correlation matrix of the sequence {uk}k=1,2,.... The following formula was

proposed for incrementally computing the p (p ≤ n) leading eigenvectors of the

correlation matrix of a sequence xk ∈ R
n, k = 1, 2, . . . [22][23]3

Φk+1 = Φk + γk(xkx
t
kΦk −ΦkUT [Φt

kxkx
t
kΦk]), (12)

where Φk is a n × p matrix whose columns converge to p leading eigenvectors

of the correlation matrix Q associated with the largest eigenvalues, γk is the

step size, and the operator UT [.] sets all the elements below the main diagonal

of its entry to zero. Let Ψ and Λ1 denote the corresponding eigenvector and

eigenvalue matrices of Σ
−1/2
W ΣmΣ

−1/2
W , i.e., Σ

−1/2
W ΣmΣ

−1/2
W Ψ = ΨΛ1. Let

ΦLDA and Λ2 denote the corresponding eigenvector and eigenvalue matrices of

Σ−1
W Σ, i.e., Σ−1

W ΣΦLDA = ΦLDAΛ2. The incremental LDA feature extraction

is done in two steps: i) using Q−1/2 algorithm to estimate Σ
−1/2
W , 2) computing

the eigenvector matrix ofΣ
−1/2
W ΣΣ

−1/2
W ,Ψ, using (12). SinceΣ

−1/2
W Ψ = ΦLDA,

the product of the outputs of these two steps provides the desired LDA features,

i.e., ΦLDA [14]. In the next section, we first introduce incremental algorithms

for Q−1/2 and then by optimizing the learning rate, we present accelerated

versions of the Q−1/2 algorithm. Note that finding the optimal learning rate

for the Q−1/2 algorithm will accelerate the convergence rate of step (i), which

leads a faster estimate of the desired LDA features. The proposed accelerated

incremental LDA feature extraction algorithm is summarized in Algorithm 1.

The structure of the proposed accelerated incremental LDA feature extraction

is also given in Fig. (1).

4. A fast Q−1/2 algorithm

The authors in [14] showed that incremental LDA feature extraction involves

the computation ofQ−1/2, whereQ is the symmetric positive definite correlation

matrix of a uniformly bounded random vector sequence xi ∈ R
D, i = 1, 2, . . ..

3There are other techniques for incremental computing of the eigenvectors of a correlation

matrix, for example see [24, 25, 26]).
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They proposed an algorithm, called the Q−1/2 algorithm, to find Q−1/2 incre-

mentally as follows

Wk+1 = Wk + ηk(I−Wkxk+1x
t
k+1W

t
k), (13)

where Wk+1 represents the Q−1/2 estimate at the k+1-th iteration, xk+1 is the

new incoming input vector at time k + 1, ηk is the step size, and W0 ∈ R
n×n

is chosen to be a symmetric positive definite matrix. Using stochastic approx-

imation, Chatterjee and Roychowdhury [14] proved that, under certain condi-

tions, the sequence {Wk}k=0,1,2,... converges to Q−1/2 with unit probability,

i.e., limk→∞ Wk = Q−1/2. The proposed incremental Q−1/2 algorithm in [14]

suffers from a low convergence rate, due to using a fixed or decreasing step size.

The authors in [16] and [17] used different techniques, including the steepest

descent and conjugate direction methods, to find the optimal step size in each

iteration in order to accelerate the convergence rate of the incremental Q−1/2

algorithm. They showed that xk+1x
t
k+1 in (13) can be replaced by Qk+1, which

is the correlation matrix estimate using the first k+1 incoming samples4. There-

fore, the incremental Q−1/2 algorithm in (13) can be rewritten in the following

form

Wk+1 = Wk + ηkGk+1,

Gk+1 = I−WkQk+1W
t
k. (14)

The correlation matrix estimate Qk can be updated incrementally by [14]

Qk+1 = Qk + θk(xk+1x
t
k+1 −Qk), (15)

where, for a stationary process, we have θ = 1/(k + 1). Note that if we use the

covariance estimate, Σk+1, instead of Qk+1 in (14), the sequence converges to

Σ−1/2. The covariance estimate Σk+1 can be updated by

Σk+1 = Σk + θk((xk+1 −mk+1)(xk+1 −mk+1)
t −Σk), (16)

4The authors in [16][17] also introduced new formula for online estimation of the correlation

matrix.

9

 
 

 



where θ is 1/(k+ 1) for a stationary process and the mean vector mk+1 can be

estimated adaptively as follows [14]

mk+1 = mk + κk(xk+1 −mk), (17)

where for a stationary process we have κk = 1/(k + 1).

Replacing Qk+1 in (14) by the correlation matrix Q and comparing it to the

general form of an adaptive algorithm [27] reveals that the updating function

G(W) = I−WQW can be considered as the negative of the gradient of some

cost function J(W) with respect to W, i.e.,

−∇J(W) = G(W) = I−WQW. (18)

The cost function J(W) and its derivative with respect to the step size can

be used to find the optimal step size ηk, k = 1, 2, . . . in each iteration. Since

the cost function J(W) was unknown, the authors in [16] and [17] could not

compute the derivative of the cost function J(W) with respect to ηk directly.

Instead, they proposed using the chain rule in order to break the derivative into

two computable parts. The proposed technique by [16] and [17] works fine when

all the elements of W are independent of each other, otherwise the proposed

chain rule formula may not give a right answer, as explained in Section 4.2.

Furthermore, since the authors in [16] and [17] have not had access to the cost

function they could not analyse the convergence of the proposed accelerated

algorithms. In the followings, We first briefly review the Q−1/2 algorithm using

the gradient descent method. Then we present the correct forms of the optimal

step size computed using the steepest descent and conjugate direction methods

in order to accelerate the convergence rate of the incremental Q−1/2 algorithm.

4.1. Gradient descent method

Aliyari and Moghaddam [19] introduced a cost function J(W) with the

global minimum atQ−1/2 and showed that applying the gradient descent method
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on J(W) would give the adaptive algorithm in (14)5. The proposed cost func-

tion J(W) : C → R is given as [19]

J(W) =
1

3
Tr

[
(WQ1/2 − I)2(W + 2Q−1/2)

]
, (19)

where C ⊂ R
n×n is the set of all symmetric positive definite matrices W that

commute with Q1/2, i.e., WQ1/2 = Q1/2W, Tr[.] is the matrix trace function,

and I denotes the identity matrix. By definition, the cost function J(W) in (19)

is one third of the trace of the product of a symmetric semi-positive definite

matrix, (WQ1/2− I)2, with a symmetric positive definite matrix, W+2Q−1/2.

Hence, the cost function itself is a semi-positive definite matrix [28], i.e., J(W) ≥
0 for all W ∈ C. By taking the gradient of the cost function in (19) with respect

to W and equating it to zero, we obtain

∇J(W) = WQW − I = 0. (20)

Equation (20) reveals that, in the domain C, the cost function J(W) has a

unique stationary point that occurs at Q−1/2. Since J(Q−1/2) = 0, then the

matrix Q−1/2 is the unique global minimum of the cost function J(W) over the

convex set C. Therefore, the gradient descent algorithm can be used to minimize

the cost function J(W) recursively in order to find the global minimum, Q−1/2.

By applying the gradient descent method on the cost function J(W), we obtain

the following recursive definition

Wk+1 = Wk + ηk(I−WkQk+1Wk). (21)

Since the true value of Q is not known in advance, we replace it by its es-

timate at the (k + 1)-th iteration6. It is straightforward to show that if W0

is a symmetric matrix that commutes with Q1/2, then the generated sequence

5Specifically, applying the gradient descent method on the introduced cost function in [19]

gives Wk+1 = Wk+ηk(I−WkQWk). Since Q is not available in advance, it will be replaced

by its estimate Qk+1, which asymptotically converges to Q.
6Note that replacing Qk+1 in (21) by xk+1x

t
k+1 (as an estimate of the correlation matrix)

gives (13). Equation (21) was proposed in [16] and [17] as a smooth version of (13).
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{Wk}k=0,1,... will also have the same properties. The authors in [14] showed

that if W0 is a semi-positive definite matrix, then there exists a uniform upper

bound for the step size ηk such that the members of the generated sequence

{Wk}k=1,2,... also remain semi-positive definite matrices (lemma 5 in [14]).

Therefore, if the initial guess W0 is chosen to be in C, under certain condi-

tions the sequence {Wk}k=0,1,... remains in the domain of the cost function, i.e.

Wk ∈ C, k = 1, 2, . . .. The cost function J(W) along the sequence {Wk}k=0,1,...

is a decreasing sequence and we have

J(W0) ≥ J(W1) ≥ J(W2) ≥ . . . ≥ 0. (22)

The boundedness from below and monotonically decreasing properties of the

sequence {J(Wk)}k=0,1,... implies the convergence of {J(Wk)}k=0,1,... [29]. For

the gradient descent algorithm the convergence occurs when the gradient of

the cost function becomes zero. Since the only stationary point of the cost

function J(W) on the domain C happens at Q−1/2, therefore the sequence

{Wk} converges to Q−1/2, i.e., limk→∞ Wk = Q−1/2 and limk→∞ J(Wk) = 0.

4.2. Steepest descent method

In steepest descent, the optimal step size ηk,opt at the k + 1-th iteration is

found by equating the first derivative of the cost function J(W) with respect to

ηk+1 to zero [30]. The authors in [16] and [17] claimed that the first derivative

can be written as product of two parts using the chain rule as follows (equation

(12) in [16] and equation (15) in [17])

∂J(Wk+1)

∂ηk
=

J(Wk+1)

∂Wk+1
· ∂Wk+1

∂ηk
, (23)

where W represent the vector form of matrix W and ’·’ is the inner product

between two vectors. The above equality is correct when all the elements of

matrix Wk+1 are independent of each other. Otherwise, equation (23) may

not be correct in general. For example consider the following situation where

diagonal elements of matrix W are dependent and the cost function is defined
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as the trace of its matrix input

W =

⎛
⎝ δ w1,2

w2,1 2δ

⎞
⎠ , and J(W) = Tr(W). (24)

By taking the direct derivative of the cost function with respect to δ, we get

∂J(W)/∂δ = ∂3δ/∂δ = 3. Using the chain rule in (23), we obtain

J(W)

∂W
=

⎛
⎝3 0

0 1.5

⎞
⎠ , and

W

∂δ
=

⎛
⎝1 0

0 2

⎞
⎠ , (25)

where their inner product, 6, is not equal to ∂J(W)/∂δ = 3.

Furthermore, since the authors in [16][17] have not had access to the explicit

form of the cost function, they could not show the convergence of the proposed

algorithms. Hence, although the resulting optimal step size seem working fine in

simulations, lack of an explicit cost function makes them less appealing. In the

following by exploiting the explicit cost function we derive new accelerated algo-

rithms for incremental LDA using the steepest descent and conjugate direction

(next subsection) methods.

By taking the derivative of (19) with respect to the step size ηk, equating to

zero, and a few additional operations (for details see the appendix) we get

∂J(Wk+1)

∂ηk
= aη2k + bηk + c = 0, (26)

where a = Tr(G3
kQ), b = 2Tr(WkG

2
kQ), and c = Tr(W2

kGkQ) − Tr(Gk).

Equation (26) is a quadratic equation and the roots, the optimal step sizes, are

given by

ηk,opt =
−b±√b2 − 4ac

2a
. (27)

Since the step size ηk cannot be a negative number, only the root with the

positive sign can be considered as an optimal step size and since the correlation

matrix Q is not available, it must be replaced by its estimate Qk+1 (as the

number of the observed samples increases we get a better estimate of the Q).

The optimal step size using the steepest descent method is given by

ηk,opt =
−2bk+1 +

√
b2k+1 − 4ak+1ck+1

2ak+1
, (28)
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where ak+1 = Tr(G3
kQk+1), bk = Tr(WkG

2
kQk+1), and ck+1 = Tr(W2

kGkQk+1)−
Tr(Gk). Therefore, the accelerated incremental Q−1/2 algorithm using the

steepest descent method has the following form

Wk+1 = Wk + ηk,opt(I−WkQk+1W
t
k), (29)

where the correlation estimate Qk+1 is given in (16) and ηk,opt in each iteration

is computed using (28). The acceleratedQ−1/2 algorithm (based on the steepest

descent method) is summarized in Algorithm 2.

4.3. Conjugate direction method

The adaptive conjugate direction algorithm for minimizing a cost function

J(W) can be written as [31]

Wk+1 = Wk + αkDk,

Dk+1 = −∇WJ(Wk+1) + βkDk, (30)

where the scalar βk can be chosen by several different methods [32]. For simu-

lations in this paper, we computed β based on the Polak-Reeves (PR) method

as [32]

βk =
‖∇J(Wk+1)

T (∇J(Wk+1)−∇J(Wk+1)‖
‖∇J(Wk)‖2 (31)

where ‖.‖ denotes the matrix norm. It is common to initialize D0 to be the

gradient of the cost function at W0 with negative sign, i.e., D0 = −∇J(W0).

Using (18) and (30) the adaptive conjugate direction algorithm for computing

Q−1/2 is

D0 = I−W0QW0,

Wk+1 = Wk + αkDk,

Dk+1 = (I−Wk+1QWk+1) + βkDk, (32)

where βk is computed using (31). Since the data are presented as a stream, the

correlation matrix Q is not known in advance. We need to replace Q in (32) by
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its estimate at k + 1-th iteration which gives a new algorithm for incremental

computation of Q−1/2 based on conjugate direction method as follows

D0 = I−W0Q0W0,

Wk+1 = Wk + αkDk,

Dk+1 = (I−Wk+1Qk+1Wk+1) + βkDk, (33)

where Q0 is the initial estimate of the correlation matrix. The algorithm in

(33) is a new algorithm for incremental computing of Q−1/2 based on conjugate

direction method.

To find the optimal value of the step size in order to accelerate the conver-

gence rate of the proposed Q−1/2 algorithm in (33), we need to find a step size

α to minimize f(α) = J(Wk + αDk), i.e., αk,opt = argminα∈R J(Wk + αDk).

This goal can be achieved by simply taking the first derivative of the cost func-

tion J with respect to αk and equate it to zero. Expanding (19) and using (32),

the cost function J(Wk+1) can be written as follows

J(Wk+1) =
1

3
Tr

(
(Wk + αkdk)

3Q
)
− Tr(Wk + αkDk) +

2

3
Tr(Q−1/2), (34)

where Dk is given in (32). By taking the first derivative of the cost function

J(Wk+1) with respect to αk and equating to zero, we obtain (see details in

Appendix)

∂J(Wk+1)

∂αk
= akα

2
k + bkαk + ck = 0, (35)

where

ak = Tr(D3
kQk+1), bk = 2/3Tr

(
(WkD

2
k +D2

kWk +DkWkDk)Qk+1

)
,

ck = Tr
(
(WkD

2
k +D2

kWk +DkWkDk)Qk+1

)− Tr(Dk). (36)

Note that in the aforementioned formulas the correlation matrix Q is replaced

by its estimate Qk+1. The only acceptable solution of the quadratic equation

in (23) is given by

αk,opt =
−bk +

√
b2k − 4akck
2ak

, (37)
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where αk,opt is the optimal step size in order to accelerate the convergence rate

of the incremental Q−1/2 algorithm in (32).
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Algorithm 1: Accelerated incremental LDA feature extraction

Input : x1, . . . ,xN the data sequence of length N , p the desired number

of LDA features

/* The sequence members xi, i = 1, . . . , N are given to the Q−1/2

algorithm one by one. */

Output: p significant LDA features

begin

Initialization:: Wold ← I ; ;

/* where I is the identity matrix. */

Initialize the estimated correlation matrix Qe using (16);

Initialize the estimated total mean me, and estimated class means

mω1 , . . . ,mωk using (17);

/* The above two steps are done using a set of training

data */

for i = 1 : N do

Update the estimated correlation matrix Qe using xi and (16) ;

Update the estimated total mean me and the estimated class

mean that xi belongs to it. ;

yi ← xi −m
ωxi
i ; zi ← xi −mi;

Feed yi into Q−1/2 algorithm (Algorithm 2) and get Wi ;

ui ←Wizi ;

Estimate p leading eigenvectors of
∑k

i=1 uiu
T
i (p leading

eigenvectors of the correlation matrix of {uk}k=1,2,...) ;

end

Φp
LDA ← Multiply p leading eigenvectors of correlation matrix of

{uk} and the output of Q−1/2 algorithm ;

/* Columns of Φp
LDA are the desired p LDA features. */

end
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Algorithm 2: Accelerated Q−1/2 algorithm

Input : x1, . . . ,xN , the data sequence of length N

/* The sequence members xi, i = 1, . . . , N are given to the Q−1/2

algorithm one by one. */

Output: WN , estimate of Q−1/2 after observing N random vectors

sequentially.

begin

Initialization:: Wold ← I ; ;

/* where I is the identity matrix. */

Initialize the estimated correlation matrix Qe;

/* This step can be done using a set of training data

using (16) */

/* Qe represents the estimated correlation estimate. */

for i = 1 : N do

Qe ← Qe + (xix
t
i −Qe)/(i+ 1) ;

/* This step update the estimated correlation matrix,

Qe */

G← I−WoldQeWold ;

a← Tr(G3Qe); b← 2Tr(WoldG
2Qe);

c← Tr(W2
oldGQe)− Tr(G) ;

η = −b+
√
b2−4ac
2a ;

Wnew ←Wold + η(I−WoldQeWold);

Wold ←Wnew;

end

WN ←Wnew

end
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5. Simulation results

In this section we test the performance of the proposed learning algorithms

for incremental LDA feature extraction. To this end, we first compare the

performance of the proposed accelerated incremental Q−1/2 algorithm with the

algorithm proposed in [14], and the gradient descent based algorithm in [17]7.

Then we apply the proposed accelerated incremental LDA technique for feature

extraction from both synthetic and real data sets. For all simulations in this

paper it is assumed that no prior knowledge about the nature or statistics of

the input data are available. The random input vectors are observed one-by-one

sequentially and used to train the proposed systems.

5.1. Accelerated incremental Q−1/2 algorithm

In this simulation, we use the second 10×10 matrix given in [33] and multiply

it by 208. The input sequence {xk ∈ R
10}k=1,2,... is generated from a zero mean

10-dimensional Gaussian distribution with the covariance matrix given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.54

0.22 113.80

−0.10 −1.38 0.60

−0.50 −5.64 1.96 56.00

1.60 −14.62 0.90 −2.14 68.80

−1.58 1.80 −0.82 3.0 5.06 45.40

−0.38 −2.48 0.46 −3.86 5.02 −3.60 6.54

1.48 0.20 0.44 1.90 6.32 5.90 0.54 14.54

1.78 8.64 −0.70 −4.52 0.78 −0.78 0.52 −1.92 14.30

0.10 −2.06 0.24 0.92 −0.20 −2.26 −0.32 −0.34 −0.18 1.30

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

7The gradient descent based algorithm in [17], can be considered as the smooth version of

the algorithm in [14].
8It is the matrix that has been used in [16] and [17].
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Figure 2: Estimating Q−1/2 using the steepest descent method. The proposed al-

gorithm in [14], the gradient descent based algorithm in [16], [17], and the proposed

algorithm in (33) use a fixed step size ηk = 0.01 (αk for algorithm in (33)) in the left

subfigure and use a decreasing step size ηk = 1/(50+0.1×k) (αk for algorithm in (33))

in the right subfigure. The proposed Q−1/2 algorithm based on the steepest descent

method finds the optimal step size in each iteration.

We generate 700 samples in order to train the proposed Q−1/2 algorithms. The

members of the input sequence are given one-by-one to each algorithm and the

relative error in each iteration is recorded. The relative error is given by

ek =
‖Wk −Q−1/2‖F
‖Q−1/2‖F , k = 1, 2, . . . , 700, (39)

where ‖.‖F denote the Frobenius-norm, Wk represents the estimate at the k-th

iteration, and Q is the actual covariance9 matrix in (38).

The initial value of the correlation matrix Q0 is estimated using the first

10 samples using (16) and the initial step size for all algorithms is empirically

chosen to be 0.01. We compare the performance of the proposed algorithm

to estimate Q−1/2 with the algorithm given in [14], and the gradient descent

based algorithm in [16], and [17] in two scenarios. We first use a fixed step

size, ηk = 0.01, for the algorithms in [14], [16], and [17] then we repeat the

9Note that in this simulation, the correlation and covariance matrices are equal.
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Figure 3: Estimated Q−1/2 using the accelerated conjugate direction method. The

proposed algorithm in [14], the gradient descent based algorithm in [16], [17], and the

proposed algorithm in (33) use a fixed step size ηk = 0.01 (αk for algorithm in (33)) in

the first figure and use a decreasing step size ηk = 1/(50 + 0.1× k) (αk for algorithm

in (33)) in the second figure. The proposed accelerated Q−1/2 algorithm based on the

conjugate direction method finds the optimal step size in each iteration.
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simulations with a decreasing step size given by ηk = 1/(50 + k × 0.1). For

a better illustration, we scale all relative errors to the interval [0, 1]. Figure 2

compares the relative errors resulting from estimation of the correlation matrix

given in (38) for different algorithms as functions of the number of iterations. All

the algorithms in Fig. 2 start with the step size η = 0.01. Although the initial

condition for the proposed algorithm based on the steepest descent method

is similar to the other algorithms, it is clear from figure 2 that the proposed

algorithm outperforms all other algorithms in both cases (fixed and decreasing

step size) and reaches a low error in far fewer iterations. We repeat a similar

experiment and compare the performance of the previously given algorithms

with the proposed accelerated Q−1/2 algorithm based on the conjugate direction

method in figure 3. The algorithm based on the conjugate direction method in

(33) uses either a fixed or decreasing step size, αk, but the accelerated version

finds the optimal step size using (37) in each iteration. The proposed accelerated

algorithm based on the conjugate direction method provides a small relative

error in fewer iterations compared to existing algorithms. Table 1 compares

the amount of error in estimating the correlation matrix in (38) for different

numbers of iterations. It is clear from Table 1 that the proposed accelerated

algorithms based on the steepest descent and conjugate direction methods give

an accurate estimate of Q−1/2 in fewer number of iterations comparing with the

given algorithm in [14], and the gradient descent based algorithm in [16], and

[17].

5.2. Iris data set

The Iris data set is a very popular data sets in the pattern recognition com-

munity 10. The data set contains 50 samples from each of three species of iris,

namely setosa, versicolor, and virginica. Four features from each sample were

10According to UC Irvine machine learning repository, the data set is the most

popular set with 569, 993 hits since 2007. These data can be downloaded at

http://archive.ics.uci.edu/ml/datasets/Iris.
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Table 1: The scaled normalized error of estimating Q−1/2 as a function of number of

iterations for different algorithms. The fixed step size is η = 0.01 and the decreasing

step size is ηk = 1/(50 + 0.1× k).

Number of iterations

2 10 50 80 150 250 500 700

Method in [14], fixed η 0.994 0.961 0.832 0.748 0.589 0.402 0.199 0.161

Method in [14], decreasing ηk 0.992 0.941 0.749 0.637 0.461 0.281 0.166 0.147

Gradient descent based method in [16][17], fixed η 0.995 0.961 0.832 0.747 0.580 0.388 0.135 0.072

Gradient descent based method in [16][17], decreasing ηk 0.992 0.939 0.746 0.629 0.441 0.260 0.089 0.062

Steepest descent based method 0.915 0.417 0.384 0.286 0.164 0.135 0.074 0.059

Conjugate direction, fixed η 0.995 0.958 0.825 0.739 0.571 0.383 0.131 0.072

Conjugate direction, decreasing ηk 0.991 0.934 0.739 0.627 0.438 0.259 0.094 0.064

Accelerated conjugate direction 0.936 0.791 0.205 0.171 0.124 0.107 0.074 0.057
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Figure 4: The left side compares the performance of the proposed algorithm based on

the steepest descent method with the algorithm in [14] and the gradient descent based

algorithm in [17] for estimating Σ
−1/2
W . The right side compares the performance of

the proposed algorithm based on the conjugate direction method with the algorithms

in [14] and [17].
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measured: the length and width of the sepals and the petals, in centimetres.

Therefore, the input sequence consists of 150 observations of four-dimensional

vectors. The sequence of four-dimensional vectors are used to train the proposed

accelerated incremental Q−1/2 algorithm and the output of Q−1/2 algorithm

(i.e., Σ
−1/2
W ) is used to extract two leading LDA features. For the Q−1/2 algo-

rithm we set the initial step sizes for all algorithms to be 0.1. The algorithm in

[14], and the gradient descent based algorithm in [16], and [17] use a decreasing

step size given by 1/(10 + i × 0.15) and the proposed algorithms based on the

steepest descent method and accelerated conjugate direction method find the op-

timal step size in each iteration. Figure 4 compares the relative errors resulting

from each algorithm on estimating Σ
−1/2
W as a function of number of iteration.

Clearly, the proposed algorithm gives a good estimate of Σ
−1/2
W in fewer itera-

tions compared with existing algorithms. The normalized errors of estimating

Σ
−1/2
W for different numbers of iterations are shown in Table 2. Figure 5 com-

pares the performance of the proposed algorithms based on the steepest descent

and conjugate direction methods to estimate the first LDA feature with algo-

rithms given in [14], [16], and [17]. Here, as the number of iterations increases,

the first LDA feature estimated by the proposed technique moves towards the

actual first LDA feature faster than existing techniques. Similar graphs are

shown in figure 6 for estimating the second LDA feature. The angles between

the estimated LDA features and actual LDA features resulting from the pro-

posed algorithms and the algorithms in [14], [16], and [17] are given in tables 3

and 4. In tables 3 and 4 the angles either converges to zero or to 180 degree.

When the angle converges to zero, the algorithm gives us LDA direction a, and

when the angle converges to 180, the algorithm gives us the LDA direction −a.
Note that, in LDA both a and −a can be considered as the same LDA features.

In other words, projection of an arbitrary vector x in direction of both a and

−a gives the same vector11. Figure 7 depicts the projection of the Iris data

11The projection of x in the direction of a is (x · a)a = ‖x‖‖a‖ cos(θ)a and in the direction

of −a is similarly (x · (−a))(−a) = ‖x‖‖a‖ cos(180− θ)(−a) = ‖x‖‖a‖ cos(θ)a.
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Table 2: The scaled relative error of estimating Σ
−1/2
W for the Iris data set as a

function of the number of iterations for different algorithms. The algorithms in [14],

[16], [17] use a decreasing step size given by 1/(10 + i × 0.15). The initial step size

for the proposed accelerated algorithms based on the steepest descent and conjugate

direction is set to 1/10.

Number of iterations

2 5 20 40 75 100 130 150

Method in [14] 0.983 0.933 0.717 0.491 0.313 0.244 0.257 0.221

Gradient descent based method in [16][17] 0.983 0.933 0.719 0.512 0.284 0.203 0.150 0.125

Steepest descent based method 0.854 0.622 0.561 0.309 0.186 0.052 0.015 0.005

Accelerated conjugate direction method 1.165 0.712 0.566 0.306 0.220 0.032 0.025 0.011

Table 3: The angle between the first estimated LDA feature and the actual LDA

feature as a function of the number of iterations for different algorithms.

Number of iterations

2 5 20 40 75 100 130 150

Method in [14] 19.24 19.60 12.47 9.91 3.82 4.82 6.66 4.01

Gradient descent based method in [16][17] 18.80 16.45 12.03 8.36 4.26 3.28 2.63 2.22

Steepest descent based method 15.52 9.86 9.59 4.82 2.09 1.11 0.32 0.18

Accelerated conjugate direction method 19.23 20.09 9.80 4.80 2.48 1.29 0.21 0.35

set into the estimated LDA feature space using the proposed steepest descent

method. It can be observed from figure 7 that although the dimensionality of

the samples reduced from four to two, three classes are linearly separable.

5.3. SRBCT data set

The small round blue cell tumors (SRBCTs) data set [34] contains infor-

mation of 63 samples and 2308 genes. The samples are distributed in four

classes: 23 Ewing’s sarcoma (EWS), 8 Burkitt’s lymphoma (BL), 12 neuroblas-

toma (NB), and 20 rhabdomyosarcoma (RMS). Each class has widely differing

prognoses and treatment options, making it extremely important that doctors
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Figure 5: This figure compares the performance of the steepest descent method

with the algorithm in [14] and the gradient descent based algorithm in [16][17]. The

left figure shows the angle between the estimated first LDA feature and the actual

first LDA features as a function of number of iterations for different algorithms. The

right figure shows the angle between the estimated second LDA feature and the actual

second LDA features as a function of number of iterations for different algorithms
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Figure 6: This figure compares the performance of the conjugate direction method

with the algorithm in [14] and the gradient descent based algorithm in [16][17]. The

left figure shows the angle between the estimated first LDA feature and the actual

first LDA features as a function of number of iterations for different algorithms. The

right figure shows the angle between the estimated second LDA feature and the actual

second LDA features as a function of number of iterations for different algorithms
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Table 4: The angle between the second estimated LDA feature and the actual LDA

feature as a function of the number of iterations for different algorithms.

Number of iterations

2 5 20 40 75 100 130 150

Method in [14] 160.17 160.24 166.33 170.62 173.29 178.02 176.50 175.98

Gradient descent based method in [16][17] 159.96 162.06 166.60 170.46 174.05 175.64 176.75 177.27

Steepest descent based method 164.61 168.26 174.37 173.97 178.40 178.74 179.57 179.81

Accelerated conjugate direction method 160.72 158.95 174.30 174.16 176.89 178.55 179.86 179.63
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Figure 7: Projection of four-dimensional samples of the Iris data set into estimated

two-dimensional LDA-feature space using the proposed steepest descent method.
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are able to classify the tumor category quickly and accurately. Since the di-

mensionality of the input data is much bigger than the number of samples, the

within-class scatter matrix (ΣW ) will be singular and the LDA features can

therefore not be computed. To solve this problem, we first reduce the dimen-

sionality of the data set to 50 by applying the PCA and projecting the data into

leading 50 principal components (since the first 50 eigenvalues of the covariance

matrix dominate the rest) 12. Then we use the sequence of 50-dimensional data

to train the proposed algorithms. Figure 8 compares the performance of the

proposed algorithm based on the steepest descent method to estimate Σ
−1/2
W

with the algorithm given in [17]. The initial step size for both algorithms is em-

pirically set to η0 = 0.008. Figure 8 shows that the proposed algorithm provides

a low estimation error in fewer iterations by optimizing the learning rate in each

iteration. Figure 8 also shows the angle between the estimated three leading

LDA features and the actual LDA features. It is clear from the right side of

figure 8 that the angle between all three estimates and the actual LDA features

becomes negligible after about 40 iterations. The projection of 50-dimensional

samples into a 3-dimensional estimated LDA feature space is shown in figure 9.

It can be observed from figure 9 that although the dimensionality is reduced

from 50 into 3, the four classes are linearly separable.

5.4. Extended Yale Face Database B

To show the effectiveness of the proposed structure for incremental LDA

feature extraction, we implement it on the extended Yale face database B13

[35]. The extended Yale face database B contains face images of 28 individuals

and around 64 near-frontal images under different illuminations per individual

[36]. We selected 5 individuals with 64 images per individual (a total of 320

face images), cropped every face image to remove the background, and resized

12For this part, we assumed that the whole data set is available in advance, but after

dimensionality reduction we trained the proposed algorithms using the sequential data.
13The Yale Face Database B is available online at

http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html.
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Figure 8: The left part compares the performance of the proposed algorithm based on

the steepest descent method to estimate Σ
−1/2
W with the gradient descent algorithm

given in [17]. The right side shows the angle between the estimated leading LDA

features and actual leading LDA features as a function of the number of iterations.
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feature space. Although the dimensionality is reduced from 50 to 3, the four classes

are linearly separable in the estimated feature space.
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them to 32×32 pixels [37]. Therefore, each face image is represented by a 1024-

dimensional (32× 32) vector. The histogram for all face images is equalized in

order to spreads out the intensity in an image and makes the resultant image

as flat as possible [38]. Figure 10 shows the cropped, histogram-equalized face

images of five subjects under different poses and illumination conditions. Be-

fore applying the proposed algorithm, we reduce the dimensionality of the face

images using the PCA algorithm. Computing the eigenvalues of the covariance

matrix of the face images14 reveals that the first three largest eigenvalues are

33.436, 8.965, and 6.737, but the fortieth eigenvalue drops to 0.082. Therefore,

we only choose 40 significant eigenvectors corresponding to the largest eigenval-

ues and reduce the dimensionality of the face images to 40 by projecting them

into the feature space spanned by the significant eigenvectors of the covariance

matrix. Figure 11 shows eigenfaces [39] corresponding to the 40 significant eigen-

vectors of the covariance matrix. The 40-dimensional vectors are fed into the

proposed incremental LDA feature extraction algorithm sequentially. For the

Q−1/2 algorithm, we start with the identity matrix and the estimate improves

by observing new samples. Figure 12 shows the angle between the estimated

significant LDA features and actual ones as a function of number of iterations.

It can be observed from figure 12 that as the number of iterations increases

(i.e., the proposed algorithm observes more samples) the angle reduces and the

proposed algorithm provides a better estimate of significant LDA features. For

a better understanding of the performance of the proposed structure, the dis-

tribution of the face images in the estimated three-dimensional LDA feature

space for different number of iterations are shown in figure 13. The top left

side of figure 13 shows the projection of face images into estimated LDA feature

space after just 5 iterations. It can be observed that five subjects are mixed

and are not linearly separable, due to an inaccurate estimate of LDA features.

As the number of the iterations increases (i.e., the proposed structure observes

more face images), the classes gradually start to separate from each other and

14The covariance matrix is computed using the vectorized representation of face images.
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Figure 10: Face images of 5 individuals that have been used in our simulations.

Figure 11: Eigenfaces corresponding to the 40 significant eigenvectors of the covari-

ance matrix of the vectorized face images.

the overlapping between them decreases. Finally, after 320 iterations, the pro-

posed structure gives a reliable estimate of the significant LDA features and the

five subjects are almost linearly separable as it shown in the bottom right of

figure 13.

6. Conclusion

Chatterjee and Roychowdhury showed that finding the LDA features incre-

mentally involves computing Σ
−1/2
W using a fixed or decreasing step size [14].

The proposed technique in [14] suffered from low convergence rate. In this paper,
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as a function of number of iterations.
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we apply the steepest descent and conjugate direction methods on an explicit

cost function to find the optimal step size in each iterations in order to accelerate

the convergence rate of Σ
−1/2
W algorithm. Similar to [14], we combine the pro-

posed accelerated Σ
−1/2
W algorithm with an adaptive PCA algorithm to derive

the LDA features. We compare the performance of the proposed structure for

incremental LDA feature extraction with the algorithm in [14], and the gradient

descent based algorithm in [16], and [17]. The simulations results showed that

the proposed algorithm provide a good estimate of the LDA features in fewer

iterations compared to the other methods.

The proposed algorithms can be used for on-line applications where the

whole data set is not available and is instead presented as a stream. As soon as

a new observation is available, the proposed structure can update LDA features

by simply using the old features and the new sample without having to run the

algorithm on the entire data set.

Appendix A.

let A ∈ C, then all leading principal minors of A are positive, and are

continuous function of matrix entries [40]. Therefore, there exists ε > 0 such

that by perturbing each entries of A by at most ε will still leave all the leading

principal minors positive. Then A+εB ∈ C for every B ∈ C such that ‖B‖2 < 1

[40]. Therefore, C is an open convex set.

By expanding the cost function at k+1-th iteration and using (18), we have

J(Wk+1) =
1

3
Tr(W3

k+1Q)− Tr(Wk+1) +
2

3
Tr(Q−1/2)

=
1

3
Tr

(
(Wk + ηkGk)

3Q
)
− Tr(Wk + ηkGk) +

2

3
Tr(Q−1/2),

(A.1)

where Gk = I−WkQWk.
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The cost function in (A.1) can be further simplified to

J(Wk+1) =
Tr(W3

kQ+ 3ηkW
2
kGkQ+ 3η2kWkG

2
kQ+ η3kG

3
kQ)

3

− Tr(Wk + ηkGk) +
2

3
Tr(Q−1/2). (A.2)

By taking the derivative of (A.2) with respect to the step size ηk and equating

it to zero, we obtain

∂J(Wk+1)

∂ηk
= Tr(G3

kQ)η2k + 2Tr(WkG
2
kQ)ηk + Tr(W2

kGkQ)− Tr(Gk)

= akη
2
k + bkηk + ck = 0, (A.3)

where ak = Tr(G3
kQk+1), bk = 2Tr(WkG

2
kQk+1), and ck = Tr(W2

kGkQk+1)−
Tr(Gk).

Appendix B.

If we expand the matrix products, we get

J(Wk) =
1

3
Tr

(
(Wk + αkDk)

3Q
)
− Tr(Wk + αkDk) +

2

3
Tr(Q−1/2)

=
1

3
Tr

(
(W3

k+3αkW
2
kdk+3α2

kWkd
2
k+α3

kD
3
k)Q

)
−Tr(Wk+αkDk)+

2

3
Tr(Q−1/2).

(B.1)

By taking the first derivative of (B.1) with respect to αk and equating it to zero,

we obtain

∂J(Wk+1)

∂αk
= akα

2
k + bkαk + ck = 0, (B.2)

where ak = Tr(D3
kQk+1), bk = 2/3Tr

(
(WkD

2
k + DkWkDk + D2

kWk)Qk+1

)
,

and ck = Tr
(
(W2

kDk +DkWkDk +D2
kWk)Qk+1

)− Tr(Dk).
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