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Abstract—The detection of ischemic cardiac beats from a R R
patient’s electrocardiogram (ECG) signal is based on the charac- 1 !
teristics of a specific part of the beat called the ST segment. The il
correct classification of the beats relies heavily on the efficient ﬂ
and accurate extraction of the ST segment features. In the present ‘
paper, an algorithm is developed for this feature extraction based ! \
on nonlinear principal component analysis (NLPCA). NLPCA !)
is a relatively recently proposed method for nonlinear feature
extraction that is usually implemented by a multilayer neural \
network. It has been observed to have better performance, l . P )
compared with linear principal component analysis (PCA), in £ 7N A N\
complex problems where the relationships between the variables '/‘*V[ e ) ey P
are not linear. In this paper, the NLPCA techniques are used ) S \'\J Point IS
to classify each segment into one of two classes: normal and Q Q
abnormal (ST+, ST—, or artifact). During the algorithm training Normal ST segment
phase, only normal patterns are used, and for classification
purposes, we use only two nonlinear features for each ST segment. R
The distribution of these features is modeled using a radial basis |
function network (RBFN). Test results using the European ST- J
T database show that using only two nonlinear components and “
a training set of 1000 normal samples from each file produce a ‘r
correct classification rate of approximately 80% for the normal |
beats and higher than 90% for the ischemic beats. i

7 Point

|
Index Terms—Biomedical signal processing, ischemia detec- H \ 1
tion, neural networks, principal component analysis, radial basis I | |
function. P ‘/-1/ \ P

.
I. INTRODUCTION Q Q

OVER the past decades, a great deal of research has been Ischemic ST segment
conducted in _th_e field Of_ biomedical signal Proces_smlgg. 1. Normal and ischemic ECG patterns. In the normal case, we observe
[1]. In everyday clinical practice, a number of biomedicahe constituent ECG waves and tfigoint. In the ischemic ECG, we observe

signals are recorded and used for patient monitoring or dfie ST elevation (this can be depression as well), and we observe in the second
beat that the/ point is not easily discernible. The data are coming from file

agno'StiC pgrposes. The eIeCtrocardiOQra_m (ECG) plays a 03 of the European ST-T database, and the lead is V4.

role in patient monitoring and diagnosis. In the European

Union alone, it is estimated that 0.3 ECG'’s per citizen per . ) L

year are recorded. The wide usefulness of the ECG, and ghectro-temporal techniques late potential characterization [5],
ease of recording it in a noninvasive manner, has resultedd{ythmia detection, [6] and noise removal [7].
concentrating considerable research effort on ECG process] € ECG consists of three basic waves: IheQRS, andl

ing techniques [1], [2]. These techniques deal mainly with19.- 1). These waves correspond to the far field induced by

ECG pattern recognition [1], [3], [4], parameter extractionSpecmC electrical phenomena on the cardiac surface, namely,
the atrial depolarization ¥ wave), the ventricular depolar-
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Ischemic heart disease is one of the most common fatebrldwide as common references. The main database used for
diseases in the industrialized world [2]. In the United States,ifichemia detection is the European ST-T database [34]. This
is estimated that 1 million people die due to ischemic/coronagiatabase includes two channels from Holters corresponding to
heart disease annually. The key in treating ischemia is 88 patients with ischemic heart disease. It includes numerous
timely detection. Since ECG is the most commonly recordégchemic episodes of all types, and thus, it is very useful in
signal in the patient monitoring and examination process,évaluating ischemia detection algorithms [35].
becomes important to be able to reliably detect ischemia fromin this paper, a new method based on NLPCA implemented
ECG analysis. Detection of ischemia can be achieved by aty-NN [36] is employed for ST segment feature extraction, and
lyzing the ST segment of the ECG (Fig. 1). Ischemia is causBBFN is subsequently used for the classification of ischemic
by decreased blood flow to parts of the myocardium, due ECG's. This method is shown to be quite reliable in the
vessel occlusion or muscle injury [18]. This causes the depdassification of normal and ischemic beats. The structure of
larization of the resting membrane potential of the ischemiBe paper is as follows. First, an overview of the NLPCA
region with respect to the resting membrane potential of theethod is given. Subsequently, the preprocessing of the ECG
normal region. This potential difference causes the flow of &ignals is described. Then, the classification scheme based on
injury current that is manifested in the ECG by an elevated RBFN for the ischemic and normal beat detection is discussed,
depressed ST segment (Fig. 1). While in most cases it is eggyi the results of testing the method on 34 files from the
to discern the ST depression, in other cases the ST depres$igfopean ST-T database are presented. Final conclusions are
may not be evident, due, for example, to the relative position @fawn in the discussion section.
the infarct and the recording point. In addition, ST depression
may be influenced by body position, as is often the case with || NONLINEAR PRINCIPAL COMPONENT ANALYSIS
leads Ill or aVF [19]. Other problems contributing to poor Th £ orincinal i Ivsis (PCA) is t
detection and incorrect classification of the ST segment in th e purpose of principal component analysis ( ) is to

ECG include the following: slow baseline drift, noise, sIope'c?eem'fy linear correlations between random variables aiming

ST changes, patient-dependent abnormal ST depression Ievatl data dimensionality reduction. The distribution of the vari-

and varying ST-T patterns in the ECG of the same patient.%b?ésc;ieﬁi(spé??ae&or?hg :ﬁ;v Ilinneafrrcf)?ttl;reezeﬁgltgdaﬁ;p% the
number of methods have been proposed in the literature for gmp bpIng P

; e : . . feature space is referred to esdingand the reverse mapping
detection based on digital filtering, time analysis of the flr%fs decoding In classical PCA, both coding and decoding

derivative of the signal and spectrotemporal, wavelet—bas%% . .
: ings are assumed linear.
and syntactic methods [9], [20]-[23]. These methods tend toPpé)A gis a purely second-order method, which uses the

g_?a}lisgre ?.pemf;c p.arameters.t_(SLilc h das d((ajgrete oihdepres%g{h covariance matri&,. in order to determine the optimal

d -l aura |?nht;]c.) In ways ﬁ” 'E"éé ef}?nh en r?n_ f? Co_rreﬁ}ojection subspace. Although PCA has found applications in
eftectflolr; O.t hpomt on the » Which is t he n ehctlon attern recognition [37], image processing [38], and various

point fo owing the 5 wave. In many cases, where t € S odern approaches in signal modeling, spectral estimation,

segment is sloped or is influenced by noise, it is impossible 1y 51ray processing [39], there are cases where the second-

reliably identify this point (Fig. 1). In such cases, the abovgjer statistics used by PCA are not enough to efficiently repre-

approaches do not produce reliable results. _sent the problem. As an illustrative example [36], consider the
NN’s have been used in the past as pattern and statlsuﬁﬁl)mem of two random variables, = cos(¢), x> = sin(¢)

class_if_iers [24], [25] in many application areas including.,quced by a single random angfe [0, 2). The nonlinear
medicine [26]. For example, NN's were used for QRS/PVeqqing functionh(zy, z2) = cos™(z1) extractd the hidden
classification [12], [13], arrhythmic events classification, dgatyre variables, which is enough to perfectly reconstruct the
for detection of atrial fibrillation [14]. NN-based ST Segme”ébservationsm,m, using the nonlinear decoding functions

analysis has been used for cos andsin. The approximation of, z» using a single linear
1) automated detection of thé point and the onset of the principal component will fail since it will try to approximate
T wave using adaptive resonance theory [27]; a 2-D circle using a straight line.
2) ischemia episode detection using adaptive backpropagan such cases, it is more appropriate to assume that the
tion NN [28]; hidden factors are nonlinear functions of the observed vari-
3) the classification of ST-T segments. ables. Furthermore, the reconstruction of the variables from

The latter is achieved in [29] with a classical backpropagatidhe factors may also be a nonlinear mapping. In general,
NN using inputs of measured ST-T data such as ST slop¢e assume that the-dimensional observation vector =

ST-J amplitude, and positive and negative amplitudes of thet, - - Zn]" is ggnerated by an underlying feature vector
T wave with emphasis in data coming from myocardigf = [f1:---.¢m]" (m < n) via n nonlinear continuous
infarction patients. Other possible areas of NN application fHnctions fromR™ to R", z1 = fi(®),...,2n = fu(®).

ECG analysis and interpretation are pattern recognition ahfe coding functionh from R™ to R™ and the decoding
' . . . . . 1 m n
classification following principal component analysis (PCAlunctiong from R™ to R™ are members of some class&s
techniques [30]-{32] or nonlinear mapping techniques [33]. ,_ _ _ _
Bi dical sianal processing techniaues are usually eval _Th|s is not the_ only codmg_ function that e_zxtracts the hidden faetor
lom? 9 p g q i Yy - |‘Hr example, consider the functiongz, x2) = sin = (z2) or h(x1, x2) =
ated using standard annotated databases, which are availahle! (x,/21), etc.
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Fig. 2. Set of ellipsoid data demonstrates the difference between nonlinear . . . .
PCA and standard PCA. The data (dots) are much better represented byFt'IQe 3. Auto-associative nonlinear network performing nonlinear PCA. In

monoparametric nonlinear principal curve (ellipse) than by the linear principa@rticular, layers 1 and 3 are the nonlinearlayers, where each node operates
component curve (straight line). using the sigmoidal functiorf. In our case, we use 80 nodes for these two

layers. Layer 2 is the principal component layer, and in our case, we use two
principal components. Finally, the input and output layers consist of 20 nodes.
and F; of nonlinear functions. The target of the nonlinear
PCA (NLPCA) method is the minimization of the nonlineaig,ch a network implements the input-output function
reconstruction mean squared error (MSE)

N

J = El|x - g(h(x)? (1) o(x) =Y i f(wix+6,)+8 @)

i=1
by an optimal choice ok € F; andh € F,. Clearly, the
solution to the nonlinear PCA problem depends on both theherew;, § are the upper layer weights and thresholds, and
choice of the setd.. and.7; and the distribution ok. Ordinary similarly, w,, 6, are the lower layer weights and thresholds.
(linear) PCA is now a special case f@i., F4 being the set It turns out [44]-[46] that the functions of the form (2) can
of linear mappings. represent any nonlinear continuous bounded function from

The unique recovery of the hidden parameters is impossiti#g* to R with any desired degree of accuracy, provided

in general because there are infinite solutions to the NLPGRhat the number of hidden unitd’ can be arbitrarily large.
minimization problem. Indeed, if a pair of functiols (), Consequently,m units of type (2) can approximate any
g1 () achieves the minimum errok,;, = E|[x—gi(hi(x))||?>, continuous function fronR™ to R™ for any dimensions and
then so does any pali; (¢~*()), g1(q()) for any invertible m, provided that the hidden layer size can be arbitrarily large.
function ¢( ). Nevertheless, the following sets are unique arithese units form a two-layer feedforward neural network with

can be considered as problem inherent [36]: linear output layer and sigmoid hidden layer.
1) the setS = {I(y), all ¢ € R™} of contoursi(yp) = Suppose now that the classgs, F,; of the NLPCA coding
{x : h(x) = ¢} for the functionh; and decoding functions are the continuous functions ffofn
2) m-parametric surfac€ = {g(y), all ¢ € R™} gener- toR™ and fromR™ to R™, respectively. These functions can
ated byg. be implemented by two-layer neural networks, as described

C is called them-parametricnonlinear principal component above. The total nonlinear PCA network will then be a cascade
surfaceof x (Fig. 2). of two subnetworks, each one consisting of two layers, which

The nonlinear PCA has been applied to various Comp|ggrrespond to the coding and decoding functions, respectively

such as nonlinear dynamical problems appearing in chemiég#€ Fig- 3). The input layer of the network hasinits equal

engineering [40], [41] and pattern recognition problems [42{C the dime_nsionality of the ol_as_ervation data. The segond
[43]. ayer hasm linear units, and as it is the output of the coding

function, it contains the nonlinear featurgsThis second layer
. is also the input to the second subnetwork that computes the
A. Autoassociative Neural Networks decoding function. The fourth layer is the output layer and
Consider a two-layer neural netwdrhat has a single linear contains» linear units whose activations form a reconstruction
output unit and a nonlinear hidden layer incorporating thsf the input vector. Layers 1 and 3 are nonlinear (sigmoid) and
sigmoid nonlinear activation functiofi(z) = 1/(1 + ¢~*). do not have necessarily the same number of units because they
are the hidden layers of the coding and decoding subnetworks
2We follow the convention where the input layer counts as the zeroth lay¢hat implement different functions.
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The NLPCA neural model described above was originally;, v5, ..., y,_, be their first differences ang,. the sample
proposed by Kramer [47] for the coding and compression wfhere theR peak occurs. The isoelectric level sampigsare
signals appearing in chemical processes. The network learnthgn defined if either
mode is autoassociative, i.e., the target vector corresponding .
to the input vectorx;, is x; itself. 90 —j—int0.08p) =0, 7 =1,2,...,001f

Let a;(7) be the activation of unit in layer!,w;;(l) be the O (5)
synaptic strength of the connection between uriit layer? % —wmt0.080)| < [Wr—icime00spl 47 =1,2,...,0.02f
and unitj in layer! — 1, and callg;(l) the bias for unit; in

layer I. With this notation, we can write is satisfied, whergf is the sampling frequency, which in our

case is 250 Hz [34]. After the isoelectric level is found, it

(1) = flui (), ifl=1,3 is easy to align the current beat with the previous corrected
@i\ = u; (1), ifl=2,4 one (yfp) by using the declination of the line connecting the
Ney 3)

. . Y=y, .
isoelectric levels of the two beats.4f= ——=, wheren, is
ui(l) = Z wij(Daj (1 = 1) + 6 (D). the number of samples between the two baseline points, the
=1 current beat is corrected with respect to the isoelectric level
The number of units in layéris denoted byV;. We also define by multiplying its samples byy
the activation of the zeroth layer to be the inpt0) = .

Our goal is to minimize the output MSE. Since the target Yi = Vi 6)
of the network is the same as the input, our MSE over®he  after this procedure, the final part of the ST segment
training patternsx,, ..., xy, becomes consists ofg = 40 samples for a sampling frequency of 250
n Hz. Finally, theg points initially composing each ST segment
JNET = Z Z ain(4) — zi1)% (4) are reduced in number W; = 20 by replacing the values of
k 1i=1 every g/N; = 2 consecutive points by their average.
Typically, the backpropagation algorithm [48] is used to min-
imize Jxgr. IV. CLASSIFICATION PROCEDURE
The classification method is based on radial basis functions
Ill. ECG SGNAL PREPROCESSING networks [49]-[51]. This network approximates a data set

In this paper, the main goal of ECG preprocessing is fgstribution using a linear combination of Green’s functions

prepare a description of the ST segment suitable for input
to the feature extractor without loss of information. This is Fz) =Y wG(|F - &l|) ()
accomplished here by computing the differences of ischemic ‘

ST segment template from the normal (reference) templa\t,ghereG( ) the Green’s function, and; is its center.

Let yrn = {yr1: U2, .., Yrg} De the sequence of samples of |, oy case, the Green’s functions are defined to be multi-

the ST segment. The normal templaitg = {71, 72,---,7}  variate Gaussian functions characterized by a mean vegtor
is constructed for each ECG as the average of the ten figStd common variance?. Therefore

normal ST segmentgy,. If {y} is the sequence of the
ST segment samples, the difference of the two sequences E
@ =y — g, 4 = 1,2,...,g defines the feature extractor G| —Z,])) =e *7 (8)
input process.

The ST segment is assumed to begin 60 ms aftektpeak
in normal sinus rhythm case. THepeak is detected using the —
Pan and Tompkins algorithm [3]. In the case of tachycardia ZU’V ’ ©)
(RR-interval < 600 ms), the beginning of the ST segment is
taken at 40 ms after th& peak. The ST segment for eachwhich consists of a linear superposition of multivariate Gauss-
heartbeat has a predefined length of 160 ms (this means flaat basis functions (probability bells) with centefs and
the end point is 220 ms aftdk peak in the normal case andwidths af
200 ms otherwise). These values are in general agreement witfthe learning process is realized by a radial-basis function
the recommendation of the European ST-T database and withtwork (RBFN) [51]. This network responds well to the
the observations in [28], [30], and [34]. resulting NLPCA distribution of the ECG transformed beats,

In order to minimize the probability of false detection ofwhich form numerous local clusters on the principal compo-
ST depression and in order to eliminate low-frequency noisgent feature space (plane in our case since we use two principal
the isoelectric level must be correctly identified. Our methatbmponents). This network consists of three layers. The input
is based on the assumption that the isoelectric level of tleyer is made up of source nodes. The inputs here are the
signal lies in the area approximately 80 ms left of tRe coordinates of the states of the NLPCA hidden layer. The
peak, where the first derivative becomes equal to zero forratmber and the activation function of the nodes of the second
least 10 ms or in the flattest 20-ms segment.ihels, ..., y, layer is determined by a self-organizing rule and depends on
be the ST segment samples of a beat. More specifically, ibeé number of clusters existing in the principal component

. o2
(Bl

and
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feature space. The output layer supplies the response of the TABLE |
network to the activation patterns applied to the input layer. CLASSIFICATION RESULTS FORDIFFERENT FILES OF THE
The activation function of nodes is a Gaussian basis EUROPEAN ST-T DATABASE. PERCENTAGES OFCORRECT
; f th q o CLASSIFICATION FOR NORMAL AND ABNORMAL PATTERNS
unction. If the data set consists vectors D = I
o i Correct classification
{-Tlv-/r_Qv e 71']\7}! then the _Inltlal nu_mber of nodes is two. Filel Normals | Abnormals File) Normals Abnormals
The first one has a Gaussian function centgred on the center /03] 80.00% 87.01%] e0129] 79.28% 89.75%
Of data set determined by the VeCtﬁ({ - i and the u{)l()-{ 78.52% 84.82% @()1323 79.06% S1.44%
v — T [} e(103 79.35% 62.05% e0f47 79.09% 80 14%|
second is centered on the point determined by the vegtor e0106]  79.35% T185%)  e0l48] 79.64% 58.70%
h. h .. th f t. el1] 79.17% 60.56% e 79.57% 94,4 29|
which maximizes ine tunction e0112] 7930% T708%|  0i54  78.60% 100.00%]
1 If .’1? € D e(113) 79.58% 99 34F%| 139 79.76% 53.21%)
P f — f dS Wlth f — ? . 10 el 14 79.68% 99.59% 0162 79.71% 10.92%)
(@) s Q) Q) 0, if 7¢D. (10) e0116] __79.20% 94.44%) <0163 _78.99% 0.00%
e(}107 78.70% 90.06% e(lo6]  79.63% 781 1%
The standard deviation of Gaussian functions is assumed to ~ ¢0/08] _79.69% 9L.27%|  e0170] _79.48% 100.00%
e(110 78.92% 100.00% 0202 79.26% S1.17%
be ConStant and equal tO el 79.96% 70.98% (203 78.73% 53.26%
r m () . el 19 79.96% 61.25% e0204)  79.69% 83 44%
e 1o (z; — 2) e0i21] _7876% 95.45%| w203 79.20% 53.46%
o= 5 (11) e0122|  78.76% 100.00%|  e0206] 79.74% 59.57%
m N @ _ = 0127 79.39% 93.15%| 0207 _79.35% 100.00%
= \/2i=1 (23 — 29 [ Totall 7932% _ 75.19%
where
m number of dimension (number of nodes in the hiddegynormal ST, ST— and artifacts. This threshold need not
0 layer of NLPCA NN); be the same for all files. It is chosen so that it can correctly
7\J A . ..
z mean value for Q|men5|om, _classify 80% of the normal beats of the training set of each
v constant depending on the total number of Gaussigpecific file.
functions.
Construction of the second layer of the RBFN utilizes a V. RESULTS

self-organizing a'go“thm with the following steps. We ran classification experiments on 34 files of the Eu-
1) For each point of the data sBX, calculate the output of \, ean ST-T database. Each file consists of more than 4000

the Gaussian functions for all hidden nodes patterns that are either normal or abnormal of one kind{ST
vie e b2 wherei < n (number of nodes). or ST- but not.both). For the training set, we used only normal
beats (approximately 25% of the normal consecutive beats
2) Find the winner encountered in each file); this is a novel approach for ischemic
beat detection since in all algorithms previously discussed
Yo = max(y;), i< n. in the literature, the training set was comprised of normal,

3) If 4, > &7, then change the position of the center oifSChemiC beatf_s, and artifacts E28]’ [31], [32], [33]. In this
the winner using way, we conS|der twp class_es. normals an(_j abnormals, the
latter including both ischemic beats and artifacts. Thus, for
gg“rl) — gg@ (- gg“)) each file, a binary classification problem is to be solved. The
classification approach used relies on definition on the
where « is an arbitrary constant (in our case equal tfeature plane (where the andy axis correspond to the two
2.0), is the convergence rate of the learning algorithnprincipal components used) of closed regions containing 80%
andT a threshold whose value, in our case¢iS>.  of the normal beats. Every beat represented by a point on the
4) If y» < T'/«, then construct a new hidden node withyytside of the normal regions is classified as abnormal. This
center at the poinf’; and standard deviation equal toapproach is file dependent and is followed for every file tested.
o and increase the number of total numieof hidden  Each classification experiment consists of three steps. In
nodes by 1. the first, we preprocess the signal as explained in the ECG
The output layer consists of only one node. A delta rulgreprocessing section. In the second, we perform nonlinear
algorithm is used in order to define the weights of the linedeature extraction based on NLPCA, where each ST segment
combination of Gaussian functions whose summation produdssnapped on the principal component feature space. The third
the output node value. The teacher is the distribution of dagtep is final classification using RBFN [51] and the definition
set points on the feature space that comprises of two principdl the threshold ensuring correct classification of 80% of
components. The delta rule learning rate is constant duringrmal beats.
this training stage. Table | shows the classification results for the files of the
After the construction of the RBFN, a threshold is foun@uropean ST-T database, where the algorithm was tested, as
for the output in order to correctly classify 80% of the normakell as indicators of the overall performance of the algorithm.
beats since our training set is composed only of norm@he table shows the sensitivity indices for normal and abnor-
beats. This is actually a discrimination border between normahl pattern classification. As we can observe, in the normal
and abnormal patterns. The latter include all patterns wiffattern case, the sensitivity index is approximately 80%. For
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Fig. 4. Five representative cases of normal beat classification. We observe that the mapping and clustering of data varies widely from file toefile; howev
the classification contours are adjusted to account for the correct classification of at least 80% of the normal beats.
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Fig. 5. Same five representative cases of Fig. 4 for abnormal beat classification. We observe that even though the mapping and clustering of data varies
widely from file to file, when the classification contours are adjusted to account for the correct classification of the 80% of the abnormal beaitsyithe sens
of abnormal beat classification reaches the 99% mark in the cases of the e0113 and e0114 files.
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the abnormal pattern recognition, the sensitivity index is in File €0108. The probability density function
13 files higher than 90%, in ten files below the 70% mark,
and in the remaining 11 files between 70 and 90%. The
overall classification index is 79.32% for normal beats and
75.19% for abnormal beats. We observed that the sensitivity
index of the algorithm is relatively low only when either more
than 80% or fewer than 1% of the beats of the record are
abnormal (ischemic). It should be noted that on the average,
approximately 5 to 20% of the beats in a Holter are ischemic¢;o.0s
as indeed is the case in the rest of the files examined.

These results are obtained using beat-by-beat analysis. By
contrast, in ischemia episode detection, the whole sequence of,9
beats is checked [34]. In all algorithms in the literature, the
performance of the algorithms detecting ischemia episodes is
far better than those used for ischemic beat detection [28],
[31], [32], [35].

Fig. 4 shows representative classification spaces for normal
beats for five of the files where the algorithm was tested.
As we can observe, normal regions containing 80% of the File 0113. The probability densiy function
normal beats are usually found in a unique cluster. We note
that even in the case of file e0106, where the normal points
are broken into two distinct clusters, the RBFN classification 12
method gives good results. 1

Fig. 5 shows the location of the abnormal points with
respect to the classification contours. As we can observe, with
the exception of file e0106, we obtain very good results foﬁo"3
abnormal beat classification. 0.4 ///l

Finally, Fig. 6 shows the three-dimensional plot of the prob- ,
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ability density function (PDF) of the classification surfaces //""i"“‘\“‘(‘ \\
used in two files with the normal points shown under the PDF 29 //'],,'I/,"O,:;f/j'/'m“\\
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VI. DISCUSSION v 20 5

In our work, we studied the representation power of NCPA (b)
for the description of cardiac beats. The representation poway. 6. PDF's used for the classification in files 0106 and e0113. We
was manifested by high rates of successful classification dpserve the points lying underneath the PDF's, which are subsequently
the discrimination problem between ischemic and norm@fPped on the-y plane, as seen in Figs. 4 and 5.
beats. The method is designed to work on a file-to-file basis,
meaning that training is done for each patient separatefgr the normal beats. Our intention was to find a threshold
The fact that we use only two principal components rendettsat would produce equally good classification for normal and
the training of the resulting network a fairly easy task. Wabnormal beats. We showed that with this approach, we can
also tested the algorithm using one, three, and four princigaep the sensitivity of the normal beat detection within 80%,
components. When only one component was used, the resulteereas the abnormal beat sensitivity can be very high (more
were considerably inferior. When three or four componentsan 90% in thirteen files). The ischemic beat sensitivity drops
were used, the training time and the computational complexity small values only in the extremely rare case of files where
increased without significant improvement of the results corthe ischemic beats are either far fewer (less than 1%) or more
pared with those obtained using two principal componentfian 80% than the normal beats (0162 and e0163).
Following NLPCA-based transformation of the ECG beats The performance indices are analogous to the ones reported
and their representation in the principal component featupg other techniques, where information from both channels
space, numerous local clusters were found, which were finatly the European ST-T database is used [4], [28], [34], [35].
classified using RBFN [51]. In these cases, linear PCA and NN [31], [32], or adaptive

The training set used in this algorithm consists only dfackpropagation NN [28], or techniques based on digital
normal beats. This is a novel approach in the sense thatfatering and heuristic processes are used [4], [35] and yield
other NN-based ischemia classification algorithms proposedsiensitivity indices for ischemic beat detection between 72 and
the literature use patterns from both normal and abnormal be@®%6. In fact, PCA combined with NN yield an ischemic
[12], [28], [29], [30]. In this approach, we defined a normagpisode sensitivity of 73% when no artifacts but only4ST
region contained by a contour in the two-dimensioanl spaaed ST patterns are used in the training set [31]. In our
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case, the training set includes only normal beats that gre]
classified by the proposed algorithm with a classificatio

percentage for normal beats of 80%. Moreover, the tot IO]
abnormal classification percentage with our method (75.19%)

refers to ischemic beat detection rather than ischemia episdée

detection. This comparison gives a measure of the promising
results produced by NLPCA, even though in [4], [30]-[35]22]
the artifacts are included in the normal class rather than the
abnormal one. (23]
In conclusion, a new classification and feature extraction
algorithm was presented. The algorithm was tested in 61921]
plication to the detection of ischemic beats in ECG Holter
recordings, which is one of the most important biomedical
signal processing problems. The method apparently exhibife!
superior performance compared with other methods using
PCA/NN for ischemic beat/episode detection [30]-[31]. [26]

REFERENCES [27]

[1] A. Cohen,Biomedical Signal Processing Boca Raton, FL: CRC, 1988. [28]
[2] P. Coumel and O. Garfeirklectrocardiography: Past and Futurénn.
NY Acad. Scj.vol. 601, 1990.

[3] J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,”
IEEE Trans. Biomed. Engvol. BME-32, pp. 230-236, 1985. [29]

[4] A. Taddei, G. Constantino, R. Silipo, M. Emdin, and C. Marchesi, “A
system for the detection of ischemic episodes in ambulatory ECG,”
Comput. Cardiol. New York: IEEE Comput. Soc. Press, 1995, pp.
705-708. [30]

[5] O.Meste, H. Rix, P. Caminal, and N. Thakor, “Ventricular late potentials
characterization in time-frequency domain by means of a wavelfél]
transform,”IEEE Trans. Biomed. Engvol. 41, pp. 625-634, 1994.

[6] N. V. Thakor and Z. Yi-Sheng, “Applications of adaptive filtering
to ECG analysis: Noise cancellation and arrhythmia detectitf?E
Trans. Biomed. Engvol. 38, pp. 785-794, 1991. (32]

[7] W. Philips, “Adaptive noise removal from biomedical signals using
warped polynomials,IEEE Trans. Biomed. Engvol. 43, pp. 480-482,
1996. (33]

[8] W.Rey, J.D. Laird, and P. G. HugenholtZ?*wave detection by digital
computer,”Comput. Biomed. Resvol. 4, pp. 509-522, 1971.

[9] G. M. Frieseret al., “A comparison of the noise sensitivity of nine QRS
detection algorithms,IEEE Trans. Biomed. Engvol. 37, pp. 85-98, [34]
1990.

[10] E. Skordalakis, “Recognition of the shape of the ST segment in ECG
waveforms,” IEEE Trans. Biomed. Engvol. BME-33, pp. 972-974, [35]
1986.

[11] P. Laguna, R. Jane, and P. Caminal, “Automatic detection of wave
boundaries in multilead ECG signals: Validation with the CSE databasd36]
Comput. Biomed. Resvol. 27, pp. 45-60, 1994.

[12] M. Strintzis, X. Magnisalis, G. Stalidis, and N. Maglaveras, “Usd37]
of neural networks for electrocardiogram (ECG) feature extraction
recognition and classificationNeural Network World J.vols. 3—4, pp.
313-327, 1992.

[13] H. Chow, G. B. Moody, and R. G. Mark, “Detection of ventricular[39]
ectopic beats using neural network§€bmput. Cardiol. pp. 659-662,
1992. [40]

[14] S. G. Artis, R. G. Mark, and G. B. Moody, “Detection of atrial
fibrillation using artificial neural networks,Comput. Cardiol. pp.
173-176, 1991. [41]

[15] R. Silipo, M. Gori, A. Taddei, M. Varanini, and C. Marchesi, “Clas-
sification of arrhythmic events in ambulatory electrocardiogram, using
artificial neural networks,Comput. Biomed. Reszol. 28, pp. 305-318,
1995. [42]

[16] P. Kotsas, C. Pappas, M. Strintzis, and N. Maglaveras, “Nonstationary
ECG analysis using Wigner-Ville transform and wavelet€dmput.
Cardiol., pp. 499-502, 1993.

[17] D. Morlet, J. P. Couderc, P. Touboul, and P. Rubel, “Wavelet analysi43]
of high-resolution ECG’s in postinfarction patients: Role of the basic
wavelet and of the analyzed bealtjt. J. Biomed. Compuytvol. 39, pp.
311-325, 1995.

[18] L. S. Geddes and W. E. Cascio, “Effects of acute ischemia on cardigé4]
electrophysiology,” inThe Heart and Cardiovascular Systefd. A.
Fozzardet al, Eds. New York: Raven, 1991, vol. 2, pp. 2021-2054.

N. Goldschlager and M. J. GoldmaRrinciples of Clinical Electrocar-
diography East Norwalk, CT: Prentice-Hall, 1989.

A. Gallino et al, “A computer system for analysis of ST segment
changes on 24 hour Holter monitor tapes: Comparison with other
available systems,J. Amer. Coll. Cardiol. vol. 4, pp. 245-252, 1984.

S. J. Weisner, W. J. Tompkins, and B. M. Tompkins, “A compact,
microprocessor-based ECG ST-segment analyzer for the operator room,”
IEEE Trans. Biomed. Engvol. BME-29, pp. 642-649, 1982.

P. Hsiaet al, “An automated system for ST segment and arrhyth-
mia analysis in exercise radionuclide ventriculagrapH#EE Trans.
Biomed. Eng.vol. BME-33, pp. 585-593, 1986.

C. Li, C. Zheng, and C. Tai, “Detection of ECG characteristic points
using wavelet transforms,JEEE Trans. Biomed. Eng.vol. 42, pp.
21-28, 1995.

D. R. Hush and B. G. Horne, “Progress in supervised neural networks.
What's new since Lippmann?IEEE Signal Processing Magpp. 1-39,
1993.

J. A. Freeman and D. M. Skapur&eural Networks: Algorithms,
Applications and Programming TechniquesReading, MA: Addison-
Wesley, 1991.

A. S. Miller, B. H. Blott, and T. K. Hames, “Review of neural network
applications in medical imaging and signal processinggt. Biol. Eng.
Comput, vol. 30, pp. 449-464, 1992.

Y. Suzuki and K. Ono, “Personal computer system for ECG ST-segment
recognition based on neural network$fed. Biol. Eng Comput.vol.

30, pp. 2-8, 1992.

N. Maglaveras, T. Stamkopoulos, C. Pappas, and M. Strintzis, “Use of
neural networks in detection of ischemic episodes from ECG leads,” in
Neural Networks for Signal Processing, V. Vlontzos, J. N. Hwang,
and E. Wilson, Eds. New York: IEEE, 1994, pp. 518-524.

L. Ebenbbrandt, B. Devine, and P. W. MacFarlane, “Neural networks
for classification of ECG ST-T segments]” Electrocardiol, vol. 25,

pp. 167-173, 1992.

P. Laguna, G. B. Moody, and R. G. Mark, “Analysis of the cardiac
repolarization period using the KL transform: Applications on the ST-T
database,Comput. Cardiol. pp. 233-236, 1994.

R. Silipo, P. Laguna, C. Marchesi, and R. G. Mark, “ST-T segment
change recognition using artificial neural networks and principal com-
ponent analysis,Comput. Cardiol. pp. 213-216, 1995.

F. Jager, R. G. Mark, G. B. Moody, and S. Divjak, “Analysis of
transient ST segment changes during ambulatory monitoring using the
Karhunen-Loeve transformComput. Cardiol. pp. 691-694, 1992.

N. Maglaveras, T. Stamkopoulos, C. Pappas, and M. Strintzis, “ECG
processing techniques based on neural networks and bidirectional asso-
ciative memories,’J. Med. Eng. Technglvol. 22, no. 3, pp. 106-111,
1998.

A. Taddeiet al,, “The European ST-T database: Standard for evaluating
systems for the analysis of ST-T changes in ambulatory electrocardiog-
raphy,” Europ. Heart J, vol. 13, pp. 1164-1172, 1992.

F. Jager, G. B. Moody, A. Taddei, and R. G. Mark, “Performance mea-
sures for algorithms to detect transient ischemic ST segment changes,”
Comput. Cardiol. pp. 369-372, 1991.

K. I. Diamantaras and S. Y. Kundrincipal Component Neural Net-
works: Theory and Applications New York: Wiley, 1996.

A. Devijver and J. Kittler,Pattern Recognition: A Statistical Approach
Englewood Cliffs, NJ: Prentice-Hall, 1989.

] K. Jain,Fundamentals of Digital Image Processingenglewood Cliffs,

NJ: Prentice-Hall, 1989.

W. Therrien,Discrete Random Signals and Statistical Signal Processing
Englewood Cliffs, NJ: Prentice-Hall, 1992.

R. Rico-Martinez, K. Krischer, and I. G. Kevrekidis, “Discrete vs.
continuous-time nonlinear signal processing of Cu electrodissolution
data,” Chem. Eng. Communvol. 118, pp. 25-48, 1992.

I. G. Kevrekidis, R. Rico-Martinez, R. E. Eske, R. M. Farber, and
A. S. Lapedes, “Global bifurcations in Rayleigh-Benard convection.
Experiments, empirical maps and numerical bifurcation analyBisys.

D, vol. 71, pp. 342-362, 1994.

B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski, “SEXNET: A
neural network identifies sex from human faces,Avances in Neural
Information Processing Systems, IR. P. Lippmanret al, Eds. San
Mateo, CA: Morgan Kaufmann, 1991, pp. 572-577.

G. W. Cottrell and J. Metcalfe, “EMPATH: Face, emotion, and gender
recognition using holons,” iAdvances in Neural Information Processing
Systems lllin R. P. Lippmanret al, Eds. San Mateo, CA: Morgan
Kaufmann, 1991, pp. 564-571.

A. R. Barron, “Approximation and estimation bounds for artificial
neural networks,” Tech. Rep. 59, Dept. Stat., Univ. lllinois at Urbana-
Champaign, Feb. 1991.



STAMKOPOULOSet al. ECG ANALYSIS USING NONLINEAR PCA NEURAL NETWORKS FOR ISCHEMIA DETECTION

<

3067

[45] A. Cybenko, “Approximation by superpositions of a sigmoidal func:
tion,” Math. Contr., Signals Systvol. 2, pp. 303-314, 1989.
A. Hornik, M. Strinchcombe, and H. White, “Multilayer feedforward
networks are universal approximatord\eural Networksvol. 2, pp.
359-366, 1989.
A. Kramer, “Nonlinear principal component analysis using autoassoci
tive neural networks,J. Amer. Inst. Chem. Eng. (AIChB)ol. 37, pp.
233-243, Feb. 1991.
E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning intern
representations by error propagation,’Harallel Distributed Processing _i University of Thessaloniki. His current research
(PDP): Exploration in the Microstructure of CognitioD. E. Rumelhart, : interests are in nonlinear biological systems
J. L. McClelland, and the PDP Research Group, Eds. Cambridge, Méjmulation, cardiac electrophysiology, medical expert systems, ECG analysis,
MIT Press, 1986, pp. 318-362, ch. 8, vol. 1. . physiological mapping techniques, parallel processing, medical imaging,
T. Poggio and F. Girosi, “Networks for approximation and learning,medical informatics, telematics, and neural networks. He has also developed
Proc. IEEE vol. 78, pp. 1481-1497, 1990. raduate and undergraduate courses in the areas of medical informatics,
J. Moody and C. Darken, “Fast learning in networks of locally-tunedompyter architecture and programming, biomedical signal processing, and
processing units,Neural Comput.vol. 1, pp. 281-294, 1989. biological systems simulation. He has over 70 publications in refereed
S. F_|ayk|n, Neural Networks: A Comprehensive Foundatiomew international journals and conference proceedings in the above areas. He
York: Macmillan, 1994. has served as a reviewer in the CEC AIM technical reviews and in a number
of international journals. He has participated in national research projects such
as the Health Telematics, Leonardo, TMR, and ESPRIT programs of the CEC.
Dr. Maglaveras is a member of the Greek Technical Chamber, the New
Telemachos Stamkopoulos(S'97) was born in York Academy of Sciences, the CEN/TC251-WG5, and Eta Kappa Nu.
1968 in Grevena, Greece. He received the B.Sc.
degree in physics in 1991 and the M.Sc. degree in
radioelectronics in 1996, both from the Aristotelian
University of Thessaloniki, Thessaloniki, Greece.

Nicos Maglaveras (S’80-M'87) received the
Bachelor degree in electrical engineering from
the Aristotelian University of Thessaloniki, Thes-
saloniki, Greece in 1982 and the M.Sc. and Ph.D.
degrees from Northwestern University, Evanston,
IL, in 1985, and 1988, respectively, in electrical en-
gineering with emphasis in biomedical engineering.
He is currently an Assistant Professor with the
Laboratory of Medical Informatics, Aristotelian

[46]

[47]

(48]

[49]
[50]

[51]

He is currently a Doctorate candidate in medica
informatics at the Aristotelian University of
Thessaloniki.

Currently, he is an Orthodox Priest of the Holy
Archdiocese of Thessaloniki, serving with the
churches of Saint Nikolaos and Dimitrios. He is alsc
a Guest Researcher with the Laboratory of Medical Informatics, Aristoteli
University of Thessaloniki. His current research interests include neu
networks, nonlinear systems, fuzzy control, and biomedical signal processi

2

+I

Michael Strintzis (S'68-M'70-SM’'80) received
the Diploma in electrical engineering from the
National Technical University of Athens, Athens,
Greece in 1967 and the M.A. and Ph.D. degrees
in electrical engineering from Princeton University,
Princeton, NJ, in 1969 and 1970, respectively.

He then joined the Electrical Engineering Depart-
ment, the University of Pittsburgh, Pittsburgh, PA,
where he served as Assistant Professor from 1970
to 1976 and Associate Professor from 1976 to 1980.
Since 1980, he has been Professor of Electrical and

Computer Engineering, University of Thessaloniki, Thessaloniki, Greece. His
current research interests include two- and three-dimensional image coding,

Konstantinos Diamantaras (M'93) was born in

University of Athens, Greece, in 1987, and his Ph.D.
degree also in electrical engineering from Princeton
University, Princeton, NJ, in 1992.

In 1992 he joined Siemens Corp. Research,
Princeton, as a post-doctoral researcher. Since
1995 he is with the Department of Electrical
and Computer Engineering, Aristotle University of
Thessaloniki, Greece, working as a research scientist
involved in various national and international projects. His current research
interests include neural networks, pattern recognition, image and signal
processing, computer vision and computer architecture. He is the author of
the book “Principal Component Neural Networks: Theory and applications,”
coauthored with S. Y. Kung, and published by Wiley Interscience.

Dr. Diamantaras is a member of INNS, NYAS, and the Technical Chamber
of Greece.

image processing and biomedical signal and image processing.
Athens, Greece, in 1965. He received his Diploma Dr. Strintzis was awarded one of the Centennial Medals of the IEEE in
in electrical engineering from the National Technicall984.



