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Abstract—The detection of ischemic cardiac beats from a
patient’s electrocardiogram (ECG) signal is based on the charac-
teristics of a specific part of the beat called the ST segment. The
correct classification of the beats relies heavily on the efficient
and accurate extraction of the ST segment features. In the present
paper, an algorithm is developed for this feature extraction based
on nonlinear principal component analysis (NLPCA). NLPCA
is a relatively recently proposed method for nonlinear feature
extraction that is usually implemented by a multilayer neural
network. It has been observed to have better performance,
compared with linear principal component analysis (PCA), in
complex problems where the relationships between the variables
are not linear. In this paper, the NLPCA techniques are used
to classify each segment into one of two classes: normal and
abnormal (ST+, ST�, or artifact). During the algorithm training
phase, only normal patterns are used, and for classification
purposes, we use only two nonlinear features for each ST segment.
The distribution of these features is modeled using a radial basis
function network (RBFN). Test results using the European ST-
T database show that using only two nonlinear components and
a training set of 1000 normal samples from each file produce a
correct classification rate of approximately 80% for the normal
beats and higher than 90% for the ischemic beats.

Index Terms—Biomedical signal processing, ischemia detec-
tion, neural networks, principal component analysis, radial basis
function.

I. INTRODUCTION

OVER the past decades, a great deal of research has been
conducted in the field of biomedical signal processing

[1]. In everyday clinical practice, a number of biomedical
signals are recorded and used for patient monitoring or di-
agnostic purposes. The electrocardiogram (ECG) plays a key
role in patient monitoring and diagnosis. In the European
Union alone, it is estimated that 0.3 ECG’s per citizen per
year are recorded. The wide usefulness of the ECG, and the
ease of recording it in a noninvasive manner, has resulted in
concentrating considerable research effort on ECG process-
ing techniques [1], [2]. These techniques deal mainly with
ECG pattern recognition [1], [3], [4], parameter extraction,
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Fig. 1. Normal and ischemic ECG patterns. In the normal case, we observe
the constituent ECG waves and theJ point. In the ischemic ECG, we observe
the ST elevation (this can be depression as well), and we observe in the second
beat that theJ point is not easily discernible. The data are coming from file
e0103 of the European ST-T database, and the lead is V4.

spectro-temporal techniques late potential characterization [5],
arrhythmia detection, [6] and noise removal [7].

The ECG consists of three basic waves: the, QRS, and
(Fig. 1). These waves correspond to the far field induced by
specific electrical phenomena on the cardiac surface, namely,
the atrial depolarization ( wave), the ventricular depolar-
ization (QRS complex), and the ventricular repolarization (
wave). We should note here that the ECG does not look
the same in all the leads of the standard 12-lead system
used in clinical practice. The ECG polarity and the shape
of the ECG constituent waves may change depending on
the lead that is used [2]. Numerous techniques have been
developed to recognize and analyze these waves, ranging from
digital filtering techniques to neural network (NN) and spectro-
temporal-based techniques [1], [5], [7]–[17].

1053–587X/98$10.00 1998 IEEE



STAMKOPOULOSet al.: ECG ANALYSIS USING NONLINEAR PCA NEURAL NETWORKS FOR ISCHEMIA DETECTION 3059

Ischemic heart disease is one of the most common fatal
diseases in the industrialized world [2]. In the United States, it
is estimated that 1 million people die due to ischemic/coronary
heart disease annually. The key in treating ischemia is its
timely detection. Since ECG is the most commonly recorded
signal in the patient monitoring and examination process, it
becomes important to be able to reliably detect ischemia from
ECG analysis. Detection of ischemia can be achieved by ana-
lyzing the ST segment of the ECG (Fig. 1). Ischemia is caused
by decreased blood flow to parts of the myocardium, due to
vessel occlusion or muscle injury [18]. This causes the depo-
larization of the resting membrane potential of the ischemic
region with respect to the resting membrane potential of the
normal region. This potential difference causes the flow of an
injury current that is manifested in the ECG by an elevated or
depressed ST segment (Fig. 1). While in most cases it is easy
to discern the ST depression, in other cases the ST depression
may not be evident, due, for example, to the relative position of
the infarct and the recording point. In addition, ST depression
may be influenced by body position, as is often the case with
leads III or aVF [19]. Other problems contributing to poor
detection and incorrect classification of the ST segment in the
ECG include the following: slow baseline drift, noise, sloped
ST changes, patient-dependent abnormal ST depression levels,
and varying ST-T patterns in the ECG of the same patient. A
number of methods have been proposed in the literature for ST
detection based on digital filtering, time analysis of the first
derivative of the signal and spectrotemporal, wavelet-based
and syntactic methods [9], [20]–[23]. These methods tend to
measure specific parameters (such as degree of depression,
ST-T duration etc.) in ways critically dependent on the correct
detection of the point on the ECG, which is the inflection
point following the wave. In many cases, where the ST
segment is sloped or is influenced by noise, it is impossible to
reliably identify this point (Fig. 1). In such cases, the above
approaches do not produce reliable results.

NN’s have been used in the past as pattern and statistical
classifiers [24], [25] in many application areas including
medicine [26]. For example, NN’s were used for QRS/PVC
classification [12], [13], arrhythmic events classification, or
for detection of atrial fibrillation [14]. NN-based ST segment
analysis has been used for

1) automated detection of the point and the onset of the
wave using adaptive resonance theory [27];

2) ischemia episode detection using adaptive backpropaga-
tion NN [28];

3) the classification of ST-T segments.

The latter is achieved in [29] with a classical backpropagation
NN using inputs of measured ST-T data such as ST slope,
ST-J amplitude, and positive and negative amplitudes of the

wave with emphasis in data coming from myocardial
infarction patients. Other possible areas of NN application in
ECG analysis and interpretation are pattern recognition and
classification following principal component analysis (PCA)
techniques [30]–[32] or nonlinear mapping techniques [33].

Biomedical signal processing techniques are usually evalu-
ated using standard annotated databases, which are available

worldwide as common references. The main database used for
ischemia detection is the European ST-T database [34]. This
database includes two channels from Holters corresponding to
90 patients with ischemic heart disease. It includes numerous
ischemic episodes of all types, and thus, it is very useful in
evaluating ischemia detection algorithms [35].

In this paper, a new method based on NLPCA implemented
by NN [36] is employed for ST segment feature extraction, and
RBFN is subsequently used for the classification of ischemic
ECG’s. This method is shown to be quite reliable in the
classification of normal and ischemic beats. The structure of
the paper is as follows. First, an overview of the NLPCA
method is given. Subsequently, the preprocessing of the ECG
signals is described. Then, the classification scheme based on
RBFN for the ischemic and normal beat detection is discussed,
and the results of testing the method on 34 files from the
European ST-T database are presented. Final conclusions are
drawn in the discussion section.

II. NONLINEAR PRINCIPAL COMPONENT ANALYSIS

The purpose of principal component analysis (PCA) is to
identify linear correlations between random variables aiming
at data dimensionality reduction. The distribution of the vari-
ables is “explained” by a few linear features calledprincipal
components or factors. The mapping from the data space to the
feature space is referred to ascodingand the reverse mapping
as decoding. In classical PCA, both coding and decoding
mappings are assumed linear.

PCA is a purely second-order method, which uses the
data covariance matrix in order to determine the optimal
projection subspace. Although PCA has found applications in
pattern recognition [37], image processing [38], and various
modern approaches in signal modeling, spectral estimation,
and array processing [39], there are cases where the second-
order statistics used by PCA are not enough to efficiently repre-
sent the problem. As an illustrative example [36], consider the
problem of two random variables
produced by a single random angle . The nonlinear
coding function extracts1 the hidden
feature variable , which is enough to perfectly reconstruct the
observations , using the nonlinear decoding functions

and . The approximation of using a single linear
principal component will fail since it will try to approximate
a 2-D circle using a straight line.

In such cases, it is more appropriate to assume that the
hidden factors are nonlinear functions of the observed vari-
ables. Furthermore, the reconstruction of the variables from
the factors may also be a nonlinear mapping. In general,
we assume that the-dimensional observation vector

is generated by an underlying feature vector
via nonlinear continuous

functions from to .
The coding function from to and the decoding
function from to are members of some classes

1This is not the only coding function that extracts the hidden factor�;
for example, consider the functionsh(x1; x2) = sin�1(x2) or h(x1; x2) =
tan�1(x2=x1), etc.
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Fig. 2. Set of ellipsoid data demonstrates the difference between nonlinear
PCA and standard PCA. The data (dots) are much better represented by the
monoparametric nonlinear principal curve (ellipse) than by the linear principal
component curve (straight line).

and of nonlinear functions. The target of the nonlinear
PCA (NLPCA) method is the minimization of the nonlinear
reconstruction mean squared error (MSE)

(1)

by an optimal choice of and . Clearly, the
solution to the nonlinear PCA problem depends on both the
choice of the sets and and the distribution of . Ordinary
(linear) PCA is now a special case for being the set
of linear mappings.

The unique recovery of the hidden parameters is impossible
in general because there are infinite solutions to the NLPCA
minimization problem. Indeed, if a pair of functions

achieves the minimum error ,
then so does any pair for any invertible
function . Nevertheless, the following sets are unique and
can be considered as problem inherent [36]:

1) the set , all of contours
for the function ;

2) -parametric surface , all gener-
ated by .

is called the -parametricnonlinear principal component
surfaceof (Fig. 2).

The nonlinear PCA has been applied to various complex
such as nonlinear dynamical problems appearing in chemical
engineering [40], [41] and pattern recognition problems [42],
[43].

A. Autoassociative Neural Networks

Consider a two-layer neural network2 that has a single linear
output unit and a nonlinear hidden layer incorporating the
sigmoid nonlinear activation function .

2We follow the convention where the input layer counts as the zeroth layer.

Fig. 3. Auto-associative nonlinear network performing nonlinear PCA. In
particular, layers 1 and 3 are the nonlinearlayers, where each node operates
using the sigmoidal functionf . In our case, we use 80 nodes for these two
layers. Layer 2 is the principal component layer, and in our case, we use two
principal components. Finally, the input and output layers consist of 20 nodes.

Such a network implements the input–output function

(2)

where are the upper layer weights and thresholds, and
similarly, are the lower layer weights and thresholds.
It turns out [44]–[46] that the functions of the form (2) can
represent any nonlinear continuous bounded function from

to with any desired degree of accuracy, provided
that the number of hidden units can be arbitrarily large.
Consequently, units of type (2) can approximate any
continuous function from to for any dimensions and

, provided that the hidden layer size can be arbitrarily large.
These units form a two-layer feedforward neural network with
linear output layer and sigmoid hidden layer.

Suppose now that the classes of the NLPCA coding
and decoding functions are the continuous functions from
to and from to , respectively. These functions can
be implemented by two-layer neural networks, as described
above. The total nonlinear PCA network will then be a cascade
of two subnetworks, each one consisting of two layers, which
correspond to the coding and decoding functions, respectively
(see Fig. 3). The input layer of the network hasunits equal
to the dimensionality of the observation data. The second
layer has linear units, and as it is the output of the coding
function, it contains the nonlinear features. This second layer
is also the input to the second subnetwork that computes the
decoding function. The fourth layer is the output layer and
contains linear units whose activations form a reconstruction
of the input vector. Layers 1 and 3 are nonlinear (sigmoid) and
do not have necessarily the same number of units because they
are the hidden layers of the coding and decoding subnetworks
that implement different functions.
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The NLPCA neural model described above was originally
proposed by Kramer [47] for the coding and compression of
signals appearing in chemical processes. The network learning
mode is autoassociative, i.e., the target vector corresponding
to the input vector is itself.

Let be the activation of unit in layer be the
synaptic strength of the connection between unitin layer
and unit in layer , and call the bias for unit in
layer . With this notation, we can write

if
if

(3)

The number of units in layeris denoted by . We also define
the activation of the zeroth layer to be the input .

Our goal is to minimize the output MSE. Since the target
of the network is the same as the input, our MSE over the
training patterns , becomes

(4)

Typically, the backpropagation algorithm [48] is used to min-
imize .

III. ECG SIGNAL PREPROCESSING

In this paper, the main goal of ECG preprocessing is to
prepare a description of the ST segment suitable for input
to the feature extractor without loss of information. This is
accomplished here by computing the differences of ischemic
ST segment template from the normal (reference) template.
Let be the sequence of samples of
the ST segment. The normal template
is constructed for each ECG as the average of the ten first
normal ST segments . If is the sequence of the
ST segment samples, the difference of the two sequences

defines the feature extractor
input process.

The ST segment is assumed to begin 60 ms after thepeak
in normal sinus rhythm case. Thepeak is detected using the
Pan and Tompkins algorithm [3]. In the case of tachycardia
(RR-interval ms), the beginning of the ST segment is
taken at 40 ms after the peak. The ST segment for each
heartbeat has a predefined length of 160 ms (this means that
the end point is 220 ms after peak in the normal case and
200 ms otherwise). These values are in general agreement with
the recommendation of the European ST-T database and with
the observations in [28], [30], and [34].

In order to minimize the probability of false detection of
ST depression and in order to eliminate low-frequency noise,
the isoelectric level must be correctly identified. Our method
is based on the assumption that the isoelectric level of the
signal lies in the area approximately 80 ms left of the
peak, where the first derivative becomes equal to zero for at
least 10 ms or in the flattest 20-ms segment. Let
be the ST segment samples of a beat. More specifically, let

be their first differences and the sample
where the peak occurs. The isoelectric level samplesare
then defined if either

or (5)

is satisfied, where is the sampling frequency, which in our
case is 250 Hz [34]. After the isoelectric level is found, it
is easy to align the current beat with the previous corrected
one by using the declination of the line connecting the

isoelectric levels of the two beats. If , where is
the number of samples between the two baseline points, the
current beat is corrected with respect to the isoelectric level
by multiplying its samples by

(6)

After this procedure, the final part of the ST segment
consists of samples for a sampling frequency of 250
Hz. Finally, the points initially composing each ST segment
are reduced in number to by replacing the values of
every consecutive points by their average.

IV. CLASSIFICATION PROCEDURE

The classification method is based on radial basis functions
networks [49]–[51]. This network approximates a data set
distribution using a linear combination of Green’s functions

(7)

where the Green’s function, and is its center.
In our case, the Green’s functions are defined to be multi-

variate Gaussian functions characterized by a mean vector
and common variance . Therefore

(8)

and

(9)

which consists of a linear superposition of multivariate Gauss-
ian basis functions (probability bells) with centers and
widths .

The learning process is realized by a radial-basis function
network (RBFN) [51]. This network responds well to the
resulting NLPCA distribution of the ECG transformed beats,
which form numerous local clusters on the principal compo-
nent feature space (plane in our case since we use two principal
components). This network consists of three layers. The input
layer is made up of source nodes. The inputs here are the
coordinates of the states of the NLPCA hidden layer. The
number and the activation function of the nodes of the second
layer is determined by a self-organizing rule and depends on
the number of clusters existing in the principal component



3062 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 11, NOVEMBER 1998

feature space. The output layer supplies the response of the
network to the activation patterns applied to the input layer.

The activation function of nodes is a Gaussian basis
function. If the data set consists of vectors

, then the initial number of nodes is two.
The first one has a Gaussian function centered on the center

of data set determined by the vector , and the
second is centered on the point determined by the vector,
which maximizes the function

with
if
if

(10)

The standard deviation of Gaussian functions is assumed to
be constant and equal to

(11)

where

number of dimension (number of nodes in the hidden
layer of NLPCA NN);
mean value for dimension;
constant depending on the total number of Gaussian
functions.

Construction of the second layer of the RBFN utilizes a
self-organizing algorithm with the following steps.

1) For each point of the data set, calculate the output of
the Gaussian functions for all hidden nodes

where (number of nodes).

2) Find the winner

3) If , then change the position of the center of
the winner using

where is an arbitrary constant (in our case equal to
2.0), is the convergence rate of the learning algorithm,
and a threshold whose value, in our case, is .

4) If , then construct a new hidden node with
center at the point and standard deviation equal to

and increase the number of total numberof hidden
nodes by 1.

The output layer consists of only one node. A delta rule
algorithm is used in order to define the weights of the linear
combination of Gaussian functions whose summation produces
the output node value. The teacher is the distribution of data
set points on the feature space that comprises of two principal
components. The delta rule learning rate is constant during
this training stage.

After the construction of the RBFN, a threshold is found
for the output in order to correctly classify 80% of the normal
beats since our training set is composed only of normal
beats. This is actually a discrimination border between normal
and abnormal patterns. The latter include all patterns with

TABLE I
CLASSIFICATION RESULTS FORDIFFERENT FILES OF THE

EUROPEAN ST-T DATABASE. PERCENTAGES OFCORRECT

CLASSIFICATION FOR NORMAL AND ABNORMAL PATTERNS

abnormal ST , ST and artifacts. This threshold need not
be the same for all files. It is chosen so that it can correctly
classify 80% of the normal beats of the training set of each
specific file.

V. RESULTS

We ran classification experiments on 34 files of the Eu-
ropean ST-T database. Each file consists of more than 4000
patterns that are either normal or abnormal of one kind (ST
or ST but not both). For the training set, we used only normal
beats (approximately 25% of the normal consecutive beats
encountered in each file); this is a novel approach for ischemic
beat detection since in all algorithms previously discussed
in the literature, the training set was comprised of normal,
ischemic beats, and artifacts [28], [31], [32], [33]. In this
way, we consider two classes: normals and abnormals, the
latter including both ischemic beats and artifacts. Thus, for
each file, a binary classification problem is to be solved. The
classification approach used relies on definition on the-
feature plane (where the and axis correspond to the two
principal components used) of closed regions containing 80%
of the normal beats. Every beat represented by a point on the
outside of the normal regions is classified as abnormal. This
approach is file dependent and is followed for every file tested.

Each classification experiment consists of three steps. In
the first, we preprocess the signal as explained in the ECG
preprocessing section. In the second, we perform nonlinear
feature extraction based on NLPCA, where each ST segment
is mapped on the principal component feature space. The third
step is final classification using RBFN [51] and the definition
of the threshold ensuring correct classification of 80% of
normal beats.

Table I shows the classification results for the files of the
European ST-T database, where the algorithm was tested, as
well as indicators of the overall performance of the algorithm.
The table shows the sensitivity indices for normal and abnor-
mal pattern classification. As we can observe, in the normal
pattern case, the sensitivity index is approximately 80%. For



STAMKOPOULOSet al.: ECG ANALYSIS USING NONLINEAR PCA NEURAL NETWORKS FOR ISCHEMIA DETECTION 3063

(a) (b)

(c) (d)

(e)

Fig. 4. Five representative cases of normal beat classification. We observe that the mapping and clustering of data varies widely from file to file; however,
the classification contours are adjusted to account for the correct classification of at least 80% of the normal beats.
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(a) (b)

(c) (d)

(e)

Fig. 5. Same five representative cases of Fig. 4 for abnormal beat classification. We observe that even though the mapping and clustering of data varies
widely from file to file, when the classification contours are adjusted to account for the correct classification of the 80% of the abnormal beats, the sensitivity
of abnormal beat classification reaches the 99% mark in the cases of the e0113 and e0114 files.
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the abnormal pattern recognition, the sensitivity index is in
13 files higher than 90%, in ten files below the 70% mark,
and in the remaining 11 files between 70 and 90%. The
overall classification index is 79.32% for normal beats and
75.19% for abnormal beats. We observed that the sensitivity
index of the algorithm is relatively low only when either more
than 80% or fewer than 1% of the beats of the record are
abnormal (ischemic). It should be noted that on the average,
approximately 5 to 20% of the beats in a Holter are ischemic,
as indeed is the case in the rest of the files examined.

These results are obtained using beat-by-beat analysis. By
contrast, in ischemia episode detection, the whole sequence of
beats is checked [34]. In all algorithms in the literature, the
performance of the algorithms detecting ischemia episodes is
far better than those used for ischemic beat detection [28],
[31], [32], [35].

Fig. 4 shows representative classification spaces for normal
beats for five of the files where the algorithm was tested.
As we can observe, normal regions containing 80% of the
normal beats are usually found in a unique cluster. We note
that even in the case of file e0106, where the normal points
are broken into two distinct clusters, the RBFN classification
method gives good results.

Fig. 5 shows the location of the abnormal points with
respect to the classification contours. As we can observe, with
the exception of file e0106, we obtain very good results for
abnormal beat classification.

Finally, Fig. 6 shows the three-dimensional plot of the prob-
ability density function (PDF) of the classification surfaces
used in two files with the normal points shown under the PDF
surfaces.

VI. DISCUSSION

In our work, we studied the representation power of NCPA
for the description of cardiac beats. The representation power
was manifested by high rates of successful classification in
the discrimination problem between ischemic and normal
beats. The method is designed to work on a file-to-file basis,
meaning that training is done for each patient separately.
The fact that we use only two principal components renders
the training of the resulting network a fairly easy task. We
also tested the algorithm using one, three, and four principal
components. When only one component was used, the results
were considerably inferior. When three or four components
were used, the training time and the computational complexity
increased without significant improvement of the results com-
pared with those obtained using two principal components.
Following NLPCA-based transformation of the ECG beats
and their representation in the principal component feature
space, numerous local clusters were found, which were finally
classified using RBFN [51].

The training set used in this algorithm consists only of
normal beats. This is a novel approach in the sense that all
other NN-based ischemia classification algorithms proposed in
the literature use patterns from both normal and abnormal beats
[12], [28], [29], [30]. In this approach, we defined a normal
region contained by a contour in the two-dimensioanl space

(a)

(b)

Fig. 6. PDF’s used for the classification in files e0106 and e0113. We
observe the points lying underneath the PDF’s, which are subsequently
mapped on thex-y plane, as seen in Figs. 4 and 5.

for the normal beats. Our intention was to find a threshold
that would produce equally good classification for normal and
abnormal beats. We showed that with this approach, we can
keep the sensitivity of the normal beat detection within 80%,
whereas the abnormal beat sensitivity can be very high (more
than 90% in thirteen files). The ischemic beat sensitivity drops
to small values only in the extremely rare case of files where
the ischemic beats are either far fewer (less than 1%) or more
than 80% than the normal beats (e0162 and e0163).

The performance indices are analogous to the ones reported
by other techniques, where information from both channels
of the European ST-T database is used [4], [28], [34], [35].
In these cases, linear PCA and NN [31], [32], or adaptive
backpropagation NN [28], or techniques based on digital
filtering and heuristic processes are used [4], [35] and yield
sensitivity indices for ischemic beat detection between 72 and
78%. In fact, PCA combined with NN yield an ischemic
episode sensitivity of 73% when no artifacts but only ST
and ST patterns are used in the training set [31]. In our
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case, the training set includes only normal beats that are
classified by the proposed algorithm with a classification
percentage for normal beats of 80%. Moreover, the total
abnormal classification percentage with our method (75.19%)
refers to ischemic beat detection rather than ischemia episode
detection. This comparison gives a measure of the promising
results produced by NLPCA, even though in [4], [30]–[35]
the artifacts are included in the normal class rather than the
abnormal one.

In conclusion, a new classification and feature extraction
algorithm was presented. The algorithm was tested in ap-
plication to the detection of ischemic beats in ECG Holter
recordings, which is one of the most important biomedical
signal processing problems. The method apparently exhibits
superior performance compared with other methods using
PCA/NN for ischemic beat/episode detection [30]–[31].
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