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Abstract--Time-frequency wavelet theory is used for the detection of tile threatening 
electrocardiography (ECG) arrhythmias. This is achieved through the use of the raised 
cosine wavelet transform (RCW'F). The RCWT is found to be useful in differentiating 
between ventricular fibrillation, ventricular tachycardia and atrial fibrillation. Ventricular 
fibrillation is characterised by continuous bands in the range of 2-10Hz; ventricular 
tachycardia is characterised by two distinct bands: the first band in the range of 2-5 Hz 
and the second in the range of 6-8Hz; and atrial fibrillation is determined by a tow 
frequency band in the range of 0-5 Hz. A classification algorithm is developed to classify 
ECG records on the basis of the computation of three parameters defined in the time- 
frequency plane of the wavelet transform. Furthermore, the advantage of Iocalising and 
separating ECG signals from high as well as intermediate frequencies is demonstrated. 
The above capabilities of the wavelet technique are supported by results obtained from 
ECG signals obtained from normal and abnormal subjects, 
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1 Introduct ion 

THERE ARE a number of cardiac arrhvthmias that could be 
catastrophic and life threatening. Among these are ventricular 
fibrillation (VF), ventrieular tachycardia (VT) and atrial fibril- 
lation (AF). VF is considered to be the most life threatening 
because the heart fails to pump blood effectively, and the 
patient could die within minutes unless normal heart rhythm is 
restored using an electrical defibrillator. 

The reliable detection and diagnosis of this arrhythmia 
constitute a challenge, not only in the monitoring of patients 
in CCU, but also in the design of automatic implantable 
defibrillators where the electric shock is automatically 
initiated by the detection of these episodes (L~GER et aL, 
1976; HERBSCI-ILEB et al., 1980; MIROWSKY et aL, 1981; 
MOWER et al., 1983). 

The accuracy of V'F detection is of extreme importance 
because failure in detection or false identification is fatal 
(CLAYTON et aL, 1993). The detection of VF is difficult 
because the ECG has a waveform that is different from 
other abnormal rhythm waveforms (BAI~O et al., 1989). 
Furthermore, practical problems such as poor electrode con- 
tact can produce artefacts that mimic these rhythms (CtAYTON 
et aL, 1993). 

Several research groups have been working on the above 
problem, and a number of detection and analysis techniques 
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have been used (NYGARDS and HULTING, 1977; MEIJ and 
ZEELENBERG, 1987; BARRO et al., t 989; CHALLIS and KITNEY, 
1990; THAKOR et al., 1990; CLAYTON et al., 1991). These 
include, in general, either time-domain or frequency domain 
analysis techniques. 

In time domain analysis, threshold crossing intervals (TCI) 
(HE]U3SCHLEB et al., 1979; THAKOR et al., 1990) and auto- 
correlation (ACF) methods are used (AUBERT et aL, 1982; 
CHEN et al., 1987). TCI was used to detect VF and was 
characterised by a mean of 105ms that corresponds to a 
dominant frequency of 9.5 Hz, whereas for TCI =220ms 
corresponds to a dominant frequency of 4.5 Hz for the detec- 
tion ofVT ( T ~ o R  et al., 1990). Other research groups have 
different values (HEP, BSCHLEB et al., 1979; AUBERT et aL, 
1982). The short-time ACF was used to distinguish between 
VF and other rhythms, depending on the fact that VF is a 
periodic signal (AtrSE~.T et al., 1982; CHEN et aL, 1987, 
CHALLIS and K_rrl~y, 1990). 

In the frequency domain technique, the VF-filter (KuO and 
DILLMAN, 1978; MEt] and ZEELENBERG, 1987) as well as 
spectral analysis techniques were used (CLAYTON et al., 
1991). The VF-fdter method relies on approximating the VF 
signal as a sinusoidal waveform. The method is equivalent to 
using a bandpass falter, the central frequency of which is the 
mean signal frequency. The spectral analysis technique reties 
On the fact that the VF frequency contents are concentrated in 
the bandwidth 4--7 Hz (CLAYTON et al, 1991). The increased 
power in this band of frequencies is the major indication of the 
presence of VF. 

The above spectral analysis technique is applied to station- 
ary signals. However, abrupt changes in the non-stationary 
ECG signal are spread over the whole frequency range. 
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Important time-varying statistical characteristics are lost once 
the signal has been Fourier transformed. In recent years time- 
frequency analysis techniques have proved to be useful in 
experimental and clinical cardiology. These include the detec- 
tion of ECG late potentials (MESTE et aL, 1991; DICKHAUS et 
al., 1994) and high resolution electrocardiography in general 
(MORLET et al., t 99 I). 

In this paper, the wavelet theory is used as a time-frequency 
representation technique to provide a method for enhancing 
the detection of life threatening arrhythmias. 

2 Wavelet transform 

The wavelet transform makes it possible to detect small, 
transient signals, even if they are hidden in large waves 
(GRoSSMANN et al., 1987; KRONALD et al., 1987; GROSSMAN 
and KRONALD, 1988; RIOUL and VETTERLI, t991, SHENSA, 
1992, CAIRE et al., 1993). This technique shows advantages 
over the short time Fourier transform because of the poor 
frequency resolution inherent in the use of short segments. The 
wavelet transform WT(t,f) is defined as: 

WT(t, t) = ~ JrS(z)g*(l  (z - t))dz (1) 

where S(t) is the signal, g(t) is the analysing wavelet, and a is 
the dilation/contraction parameter defined asfo/f. 

The basis functions are obtained from a given analysing 
wavelet g(t) by dilation or contraction and by time shifts. The 
analysing wavelet g(t) should satisfy a certain number of 
properties. The most important are integrability, square integr- 
ability and that it has no DC-component (R/OUL et al., 1991; 
HLAWATSCH and BOUDREAUX-BARTELS, 1992). Moreover, it 
is convenient to assume that G(o) = 0 for negative frequen- 
cies. A frequently used analysing wavelet is the modulated 
Gaussian function that was introduced by Morlet and Gross- 
man (GABOR, 1946). 

( ta + jo~ot ) (21 g(t) exp \ -  ~- 

Admissibility conditions are satisfied with co o between 5.0 and 
6.0 (GouPILLAND et aL, 1984; GROSSMANN et al., 1987). 
Another analysing wavelet is the raised cosine, which is 
defined as 

~ sin(~ t)cos(at)e J't 
g~,,(t) = (3) 

1 - -  - -  

where fl denotes the bandwidth of the filter, and a signifies the 
roll-off frequency. 

The importance of this analysing wavelet is that the signal is 
analysed through an orthogonal wavelet so that the time and 
spectral detection of the signal are enhanced. Also, this 
wavelet has the ability to reduce the redundancy and inter- 
ference in the WT without sacrificing accuracy (PEEBLES, 
1976; 1987). 

The wavelet transform as defined by equ. 1 is linear. 
Although the linearity is a desirable property, it is desirable 
to deal with a quadratic structure of the wavelet transform 
when we want to interpret the wavelet as a time-frequency 
energy distribution. The sealogram is defined as the squared 
magnitude of the wavelet transform and it can be interpreted in 
terms of the signal energy. 
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3 Methods 

3.1 Wavelet analysis 

The algorithms presented above were tested using Matlab 
software package version (4) running on a PC with an 80486 
processor. The readings were based on lead II and sampled at 
512 samples per second. The analysing frequency ranged from 
0.05--100Hz. This analysis was performed on 2s of subject 
data under consideration. The computation of the wavelet 
transform is performed by calling FFf  three times for a 
given value of the sealing parameter a. The determination of 
the spectral zones and the feature extraction are carried out 
based upon the scalogram. Fig. 1 shows the flow chart of the 
signal-processing techniques that describes the way in which 
the data have been processed. 

3.2 ECG data 

Performance evaluation was conducted using the MIT-DB 
and the ECG database at the Electronic Engineering Depart- 
ment of Yarmouk University (YUDB). This data base was 
developed in cooperation with Kent University in the UK, and 
it consists of Holter ECG recordings obtained from different 
patients. In this initial study, a total of 45 ECG records (8 with 
predominant rhythm, 12 associated with ventricular fibrilla- 
tion, 13 with ventricular tachycardia and 12 with atrial 
fibrillation) were studied. 

3.3 ECG analysis 

To quantify the differences between the various groups with 
the help of the wavelet transform, we compared the densities 
for different frequency bands. That is, we computed the 
volume underneath the 3D plots of the square modulus of 
the wavelet transform for several regions of the t ime- 
frequency plane. The volume can be interpreted as the 
energy of the signal within that particular time-frequency 
region. We divided the time-frequency plane into seven 
bands ranging from 0 to 15 Hz. For sinus rhythm the energy 
parameter was calculated within the time intervals T 1 and T 2 
integrated over the whole frequency axis. The time interval T 1 
was determined by the region of the QRS-eomplex, and the 
time interval T 2 was determined by the region of the T-wave 
(see for example LAGtrNA et. al., (1996) and MUK/-IOPADHYAY 
and SIRChR (1996). 

As the wavelet transform is very sensitive to abrupt changes 
in the time direction, the energy parameter over the given time 
intervals attains relatively large values for normal subjects. 
We refer to this parameter as T v and define it as the sum of the 
energy parameters computed within the intervals T 1 and T z. 
Although the signals of  AF and VT exhibit a QRS-eomplex, 
the parameter value T 2 for these signals remains relatively 
small, owing to the absence of abrupt changes in the region of 
the T-wave. Therefore the value of T v will still be smaller than 
that for the normal subjects. 

The diseriminatiou between different kinds of atrhythmia 
was carried out by calculating the energy parameters over 
frequency bands. A~ shown in Table I, the AF is conc.~trated 
in the range 0-5 Hz. To discriminate AF from other arrhyth- 
mias we compared the value of the energy parameter in the 
frequency band 0-2 Hz with a threshold value, and referred to 
this value as A I . IrA 1 was >0.2, the ease was identified as an 
AF group. If  it was not an AF group, it could be either a VT or 
VF case. 

The classification of the VT and VF groups was then carried 
out by computing the value of the energy parameter over the 
frequency band 2-10 Hz; we called this parameter A:. The VF 
group was identified by a threshold value A~ > 0.7, whereas V r 

November 1997 627 



Fig. 1 

time analysis 
and 

time detection 
features 

MIT-DB I 
[ I 

s~2 s a r ~ s  I 
~r second I 

f 

I 

Illl 

Fouder transform 
and 

spectral analysis 
I I i 

p . . . . . . . . . . . . . . . . . . . . . . . . . .  , 

t 

] 1 I . . . .  

I 
s(r,a) = G'(,')~O 

wavelet t~ansformat.Jon 
feature extraction ~/ 

I determinatiOn I 
of 

Ispectraf zone~ 

Flowchart representing the way by which the data has been processed 

Table 1 Sealogram results obtained from some arrhythmia signals for different frequen<y bands. 

Arrhythmia files 0-2Hz 2~SHz 5--6 Hz 6--8 Hz 8.-10 Hz 10-12 Hz 12---15 Hz 

AF Files p203 MIT-DB 0.2982 0.2688 0.0706 0.1204 0.0910 0,0856 0.0653 
p222 MIT-DB 0.2927 0.2286 0.0555 0.1135 0.1014 0.1115 0.0968 

pl0 YUDB 0.2173 0.2167 0.0669 0.1362 0.1190 0.1330 0.1109 
VT files p106 MIT-DB 0.1478 0.3003 0.0889 0.1549 0,1149 0,1040 0.0893 

p200 MIT-DB 0.1488 0.3336 0.0886 0 . 1 3 7 1  0.1072 0.1009 0.0838 
p203 MIT-DB 0.1394 0,3040 0.0917 0.1539 0.1177 0.1117 0.0816 
p205 MIT-DB 0.0481 0,2461 0.0935 0.1720 0.1390 0.I591 0.1422 

p20 YUDB 0.0224 0.3869 0.1276 0.1900 0.1002 0.0952 0.0778 
VF Files p207 MIT.DB 0.1015 0.4007 0.1136 0.1590 0.0933 0.0772 0,0546 

p207 MIT-DB 0.0460 0.3742 0.1207 0.1945 0.1143 0.0837 0.0666 
p207 MIT-DB 0.0933 0.3962 0.1233 0,1790 0.0893 0.0694 0.0495 
p207 MIT-DB 0.0640 0.3519 0.1312 0,2255 0.1318 0.0655 0.0301 

p30 YUDB 0.0835 0.1927 0.1044 0 . 1 8 8 1  0.1603 0.1627 0.1084 
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Fig. 2 
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Flowshart showing the principle of the classification scheme 

group was identified by .4 2 <: 0.7. This classification scheme is 
illustrated in Fig. 2 as a flowchart. 

4 Results and discussion 

4.1 Analysis examples 

Fig. 3 shows the results obtained from the simulated test 
signal. It shows respectively, the test signal, the spectrum of 
the signal, the magnitude contour of the RCWT and the 3D 

plot of the RCWT. The test signal s(t) is composed of a 
sinusoidal signal at 6 Hz. The test signal also has a very small 
distortion at t = 0.6, denoted by 6 l, where 61 is an impulse of 
amplitude 0.5% of the signal peak value. This small distortion 
was added in order to illustrate the time detection capabilities 
of the RCWT and the frequency resolution at low frequency 
due to 6 t contribution. The 3D surface plot shows a peak at 
6 Hz and a roll off in the frequency range 3-9 Hz resulting 
from the existence of the delta irregularity (HLWATSCH and 
BOUDREAUX-BARTELS, 1992). 

Fig. 4 shows nearly two cycles of a normal sinus rhythm 
ECG. It has a regular and normal QRS shape QRS with heart 
rate of 62 beats rain - t .  The spectrum of the signal is located 
in the range of 0.1-30Hz. The magnitude contour of the 
RCWT shows the variation of the signal in the time-frequency 
domain. The power is located within the QRS complexes and 
concentrated in a frequency range of 4-10 Hz. The T-wave 
appears near the QRS complex with low frequency content 
concentrated in the range of 1.5-5 Hz. 

Fig. 5 shows the ECG signal obtained from a patient with 
atrial fibrillation. It consists of a single QRS-complex. The T- 
wave is not distinguishable. The average heart rate for this 
patient is 62 beats min-1. The QRS is regular with normal 
shape. The spectrum of the signal is located in the range of 
0--30Hz. The RCWT is characterised by a dominant low 
frequency signal. This signal extends to cover the whole 
time domain and a frequency band of 0-5 Hz. Also, the 
wavelet contour separates these low-frequency signal fre- 
quency contents from those of noise that have been localised 
in the range of 5-17 Hz. 

Fig. 6 shows the results obtained from a patient with an 
episode of ventricular tachycardia. The signal shows regular 
QRS-complexes. The heart rate is 300 beats rain - t .  The 
spectrum of the signal is in the range of 2-10Hz, manifested 
as bands of frequencies centred around 3, 7 and 9 Hz. The 
RCWT contour shows that the signal has two major frequency 
bands, centred at 3 and 7 Hz that cover the whole time domain. 

Fig. 7 shows results obtained from a patient with ventricular 
fibrillation. The VF signal has a random shape with unrecog- 
rtisable ECG features. The related signal features cannot be 
detected, either in time- or in frequency-domain analysis 
techniques. In the frequency domain, the signal contents are 
centred in the band 1-8 Hz. The RCWT is intended to show 
more informative results than time or frequency techniques. 
As shown, the RCWT contour separates the detection of 
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Fig. 3 (a) Simulated test signal (b) Frequency spectrum of  test signal (c) Magnitude contour of RCWT for test Mgnal (d) 3D plot of RCWT 
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Fig. 6 (a) ECG signal obtained from patient suffering from 
ventricular tachcardia. ('.'b) Frequency spectrum of ECG 
signal. (c) Magnitude contour of RCWT for ECG signal 
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Fig. 5 (a) ECG signal obtained from patient suffering from atrial 
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Magnitude contour of RCWT for ECG signal 
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Fig. 7 (a) ECG signal obtained from patient suffering from 
vent~cular fibrillation. (b) Frequency spec~rn of ECG 
signal. (c) Magnitude contour of RCWT for ECG signal 

ventricular fibrillation from that of ventrieular tachyeardia, 
as VF has a broad band of frequencies in the range of  2-10 Hz 
and extends over the whole time domain. This feature 
distinguishes VF from normal ECG, VT and AF. Furthermore, 
the ability of the wavelet transform to separate noise para- 
meters from signal parameters at different rime instants is 
clarified. 

Another example for V'F, which was obtained from the MIT 
ECG database, is shown in Fig. 8. Again, the RCWT contour 
shows a broad band of frequencies, in the range of 2---9 Hz, that 
extend over the whole time domain. 

4.2 Comparison between ECG groups 

Table 1 shows the distribution of energy with respect to 
these frequency, bands for different arrhythmia files. For AF, 
the energy is concentrated in the range 0-5 Hz, the VT case 
shows two apparent frequency bands in the range of 2-5 and 

6-8 Hz, and the VF has a broad frequency band in the range 
2-10 Hz. As is demonstrated in the Table, a clear distinction 
between the various frequency components is achieved using 
the energy parameter defined by t ic  wavelet transform. Based 
upon the energy parameters, we were able to deduce a simple 
set of  rules to construct an operational classification scheme 
by comparing these parameters with a set of thresholds. 

Table 2 summadscs the results of  this classification scicme. 
With these results we can determine the sensitivity and the 
specificity of the algorithm. We show these results in Table 3. 
We should like to point out the fact that the type of database 
will influence the threshold values slightly. We could have 
obtained better specificity and sensitivity values ff we had 
used slightly different threshold values for the IVlIT-DB and 
YUDB. 

The suggested energy parameter for discrimination is only a 
first attempt in describing such patterns. In spite of  the fact 
that these quantification results are obtained from the leanfing 
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Fig. 8 (a) ECG signal obtained from MIT-DB for patient suffering 
from ventricular fibrillation. (b) Frequency spectrum of 
ECG signal. (c) Magnitude contour of RCWT for ECG 
signal 

Table 2 Classification according to energy parameter in time- 
frequency plane of wavelet transform 

Detected arrhythmia 

Actual arrhythmia VF VT AF NR 

conducting further experiments using the RCWT. Further- 
more, future work will concentrate on developing software 
for automatic detection of  life threatening arrhythmias using 
the wavelet transformation. 

VF 11 2 0 0 
VT 1 11 0 0 
AF 0 0 11 1 
NR 0 0 1 7 

Table 3 Sensitivity and specificity for learning set groups 

FP FN Sensitivity, % Specificity., % 

VF 2 I 91.7 
VT 1 2 84.6 
AF 1 1 91.7 
NR 1 1 87.5 

FP = false positive; FN = false negative 

set, and thus optimistically biased,, we believe that the results 
are promising and confirm the importance of  this approach. 

5 C o n c l u s i o n s  

In this paper, the RCWT is implemented and tested on 
normal as well as life-threatening arrhythmias such as AF, VT 
and VF. The RCWT revealed more information regarding the 
frequency contents of  the P-, QRS- and T-waves against time. 
The RCWT also revealed some interesting characteristic 
features such as low frequency band (0-5 Hz) for A.F, two 
distinct frequency bands (2-5 and 6-8 Hz) for VT, and a broad 
frequency band (2-10Hz)  for VF. The classification scheme 
that has been derived from the scalogram of  the wavelet 

,transform has proved to be simple and useful in differentiating 
between different types o f  arrhythmia. Owing to the small 
mmaber of  available life threatening arrhythmia signals, future 
work will concentrate on obtaining more of  these signals and 
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